Simulink®

MathWorks® Automotive Advisory Board Control
Algorithm Modeling Guidelines Using MATLAB®,
Simulink®, and Stateflow®

MATLAB&SIMULINK

R2016a) MathWorks:

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MathWorks® Automotive Advisory Board Control Algorithm Modeling Guidelines Using
MATLAB®, Simulink®, and Stateﬂow®

© COPYRIGHT 2007-2016 by MathWorks Automotive Advisory Board

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 2.0 (Release 2009a)
Revised for Version 2.1 (Release 2009b)
Rereleased for Version 2.1 (Release 2010a)
Rereleased for Version 2.1 (Release 2010b)
Rereleased for Version 2.1 (Release 2011a)
Rereleased for Version 2.1 (Release 2011b)
Rereleased for Version 2.2 (Release 2012a)
Rereleased for Version 2.2 (Release 2012b)
Revised for Version 3.0 (Release 2013a)
Rereleased for Version 3.0 (Release 2013b)
Revised for Version 3.1 (Release 2014a)
Rereleased for Version 3.1 (Release 2014b)
Rereleased for Version 3.1 (Release 2015a)
Rereleased for Version 3.1 (Release 2015b)
Rereleased for Version 3.1 (Release 2016a)

Contents

Introduction

Presentation of Guidelines Hosted by MathWorks 1-2
Motivation e 1-3
Notes on Version 3.0 1-4
Guideline Template, 1-5
Guideline ID e 1-6
Guideline Title 1-6
Priority e 1-6
S0P .« o it 1-7
MATLAB Versions, 1-8
Prerequisites e 1-8
Description e 1-9
Rationale 1-9
Last Change 1-10
Model Advisor Check 1-10
Document Usage 1-11
Model Advisor Checks for MAAB Guidelines 1-12

Software Environment

2|

General Guidelines 2-2

vi

Contents

Naming Conventions

3

4

General Guidelines 3-2
Model Content 3-10

Model Architecture
Simulink and Stateflow Partitioning 4-2
Subsystem Hierarchies 4-14
J-MAAB Model Architecture Decomposition 4-31

Model Configuration Options

S|

6/

Model Configuration Options 5-2

Simulink
Diagram Appearance 6-2
Signals 6-42
Block Usage 6-53
Block Parameters 6-80
Simulink Patterns 6-88

Stateflow

7]

Chart Appearance i iuiiunin. 7-2
Stateflow Data and Operations 7-28
Events 7-57
State Chart Patterns 7-64
Flow Chart Patterns 7-72
State Chart Architecture 7-91

Enumerated Data

8

General Guidelines 8-2

9

MATLAB Function Appearance 9-2
MATLAB Function Data and Operations 9-9
MATLAB Function Patterns 9-15
MATLAB Function Usage 9-19

vii

viii

Recommendations for Automation Tools

A

Guideline Writing

Flow Chart Reference

C

Background Information on Basic Blocks and

Signals

Basic Blocks D-2
Signals and Signal Labels D-3
MAAB Glossary

Contents

Introduction

+ “Presentation of Guidelines Hosted by MathWorks” on page 1-2
+ “Motivation” on page 1-3

+ “Notes on Version 3.0” on page 1-4

* “Guideline Template” on page 1-5

+ “Document Usage” on page 1-11

* “Model Advisor Checks for MAAB Guidelines” on page 1-12

] Introduction

Presentation of Guidelines Hosted by MathWorks

This presentation of the MathWorks® Automotive Advisory Board (MAAB) guidelines,
Version 3.0, is based on the document, of the same title, authored by the MAAB working
group. In addition to the information included in the original document, this presentation
includes references to corresponding Model Advisor MAAB checks that you can apply if

you are licensed to use Simulink® and Simulink Verification and Validation™ software.

1-2

Motivation

Motivation

The MathWorks Automotive Advisory Board (MAAB) guidelines are important for
project success and teamwork—both in-house and when cooperating with partners or
subcontractors. Observing the guidelines is one key prerequisite to achieving:

System integration without problems
Well-defined interfaces

Uniform appearance of models, code, and documentation
Reusable models

Readable models

Problem-free exchange of models

A simple, effective process
Professional documentation
Understandable presentations

Fast software changes

Cooperation with subcontractors

Successful transitions of research or predevelopment projects to product development

1

Introduction

Notes on Version 3.0

1-4

The current version of this document, 3.0, supports MATLAB® releases R2007b through
R2011b. Version 3.0 references rules from the NASA Orion style guidelines (NASA -
Orion GN&C: MATLAB and Simulink Standards). Rules that are referenced from the
NASA Orion guideline are noted with a “See also” filed that provides the original rule
number.

To develop version 3.0 of the guidelines, the MAAB used MathWorks R2011b software.
However, the Model Advisor MAAB checks included with Simulink Verification and
Validation are verified for each release.

http://www.mathworks.com/aerospace-defense/standards/nasa.html
http://www.mathworks.com/aerospace-defense/standards/nasa.html

Guideline Template

Guideline Template

In this section...

“Guideline ID” on page 1-6
“Guideline Title” on page 1-6
“Priority” on page 1-6

“Scope” on page 1-7

“MATLAB Versions” on page 1-8
“Prerequisites” on page 1-8
“Description” on page 1-9
“Rationale” on page 1-9

“Last Change” on page 1-10

“Model Advisor Check” on page 1-10

Guideline descriptions are documented, using the following template. Companies that
want to create additional guidelines are encouraged to use the same template.

ID: Title XX_nnnn: Title of the guideline (unique, short)

Priority Mandatory, Strongly recommended, or Recommended

Scope MAAB, NA-MAAB, J-MAAB, Specific Company (for optional local
company usage)

MATLAB One of the following:

Versions All
RX, RY, RZ
RX and earlier
RX and later
RX through RY

Prerequisites Links to guidelines, which are prerequisites to this guideline (ID:
Title)

Description Description of the guideline (text, images)

Rationale Motivation for the guideline

Last Version number of last change

Change

1-5

] Introduction

Model Title of and link to the corresponding Model Advisor check, if a check
Advisor exists
Check

Note: The elements of this template are the minimum required items for understanding
and exchanging guidelines. You can add project or vendor fields to this template as long
as their meaning does not overlap with existing fields. Such additions are encouraged

if they help to integrate other guideline templates and lead to a wider acceptance of the
core template.

Guideline ID

* The guideline ID is built out of two lowercase letters (representing the origin of the
rule) and a four-digit number, separated by an underscore.

* Once a new guideline has an ID, the ID does not change.
* The ID is used for references to guidelines.

+ The two letter prefixes na, jp, jc and eu are reserved for future MAAB committee
rules.

+ Legacy prefixes, db, jm, hd, and ar, are reserved. The MAAB committee will not use
these prefixes for new rules.

+ No new rules are to be written with these legacy prefixes.

Guideline Title

* The title should be a short, but unique description of the guidelines area of application
(for example, length of names)

+ The title is used for the Prerequisites field and for custom checker tools.
* The title text should appear with a hyperlink that links to the guideline.

Note: The title should not be a redundant short description of the guidelines content,
because while the latter may change over time, the title should remain stable.

Priority

Each guideline must be rated with one of the following priorities:

1-6

Guideline Template

* Mandatory
* Strongly recommended

* Recommended

The priority describes the importance of the guideline and determines the consequences

of violations.

Mandatory

Strongly Recommended

Recommended

Definition

Guidelines that all
companies agree to that are
absolutely essential

Guidelines that all
companies conform to 100%

Guidelines that are agreed
upon to be a good practice,
but legacy models preclude
a company from conforming
to the guideline 100%

Models should conform

to these guidelines to the
greatest extent possible;
however, 100% compliance
1s not required

Guidelines that are
recommended to improve
the appearance of the model
diagram, but are not critical
to running the model

Guidelines where
conformance is preferred, but
not required

Consequences: If the guideline is violated,

Essential items are missing

The model might not work
properly

The quality and appearance
deteriorates

There may be an adverse
effect on maintainability,
portability, and reusability

The appearance does not
conform with other projects

Waiver Policy: If the guidel

ine is intentionally ignored,

The reasons must be
documented

Scope

The scope of a guideline may be set to one of the following:

Scope

Description

MAAB (MathWorks Automotive Advisory

Board)

A group of automotive manufacturers and
suppliers that work closely together with

1-7

] Introduction

Scope Description
MathWorks. MAAB includes the subgroups
J-MAAB and NA-MAAB.

J-MAAB (Japan MAAB) A subgroup of MAAB that includes

automotive manufacturers and suppliers in
Japan and works closely with MathWorks.
Rules with J-MAAB scope are local to
Japan.

NA-MAAB (North American MAAB) A subgroup of MAAB that includes
automotive manufacturers and suppliers in
the United States and Europe and works
closely with MathWorks. Rules with NA-
MAAB scope are local to the United States
and Europe.

MATLAB Versions

The guidelines support all versions of the MATLAB and Simulink products. If the rule
applies to specific versions, the versions are identified in the MATLAB versions field. The
version information is in one of the following formats.

Format Definition

All All versions of MATLAB

RX, RY, or RZ A specific version of MATLAB

RX and earlier Versions of MATLAB until version RX

RX and later Versions of MATLAB from version RX to the current version
RX through RY Versions of MATLAB between RX and RY

Prerequisites

* The Prerequisite field is for links to other guidelines that are prerequisites for this
guideline (logical conjunction).

* Use the guideline ID (for consistency) and the title (for readability) for the links.

* The Prerequisites field should not contain any other text.

1-8

Guideline Template

Description

* This field contains a detailed description of the guideline.

+ If needed, add images and tables.

Note: If formal notation (math, regular expression, syntax diagrams, and exact numbers/
limits) is available, use it to unambiguously describe a guideline and specify an
automated check. However, a human, understandable, informal description must always
be provided for daily reference.

Rationale

This field lists the reasons that apply for a given guideline. You can recommend
guidelines for one or more of the following reasons:

Rationale Description

Readability Easily understood algorithms

* Readable models
* Uniform appearance of models, code, and documentation
* Clean interfaces

* Professional documentation

Workflow Effective development process and workflow

+ Ease of maintenance

* Rapid model changes

* Reusable components

* Problem-free exchange of models
* Model portability

Simulation Efficient simulation and analysis

* Simulation speed
* Simulation memory

* Model instrumentation

1-9

] Introduction

Rationale Description
Verification and Ability to verify and validate a model and generated code
validation with:

* Requirements traceability
* Testing
* Problem-free system integration

* C(Clean interfaces

Code generation Generation of code that is efficient and effective for
embedded systems

+ Fast software changes

* Robustness of generated code

Last Change

The Last change field contains the document version number.

Model Advisor Check

The Simulink Verification and Validation product includes Simulink Model Advisor
MAAB checks, which correspond to a subset of MAAB guidelines, that you can select
and run with the Simulink Model Advisor. In this presentation of the MAAB guidelines,
MathWorks includes a Model Advisor check field in guideline descriptions, which
contains the title of and a link to the corresponding Model Advisor check, if a check
exists. Although this information is included, note that the MAAB working group takes a
neutral stance on recommendations for style guide checkers.

For a list of available Model Advisor checks for the MAAB guidelines, see “Model Advisor
Checks for MAAB Guidelines” on page 1-12. For information on using the Model
Adwvisor, see “Run Model Checks” in the Simulink documentation.

1-10

Document Usage

Document Usage
* Name Conventions and Model Architecture provide basic guidelines that apply to all
types of models.

Simulink and Stateflow” provide specific rules for those environments.

* Some guidelines are dependent on other guidelines and are explicitly listed
throughout the document.

+ If users do not view the content of masked subsystems with a model, the guidelines
for readability are not applicable.

For information on automated checking of the guidelines, see Appendix A.

1-11

1

Introduction

Model Advisor Checks for MAAB Guidelines

1-12

Simulink Verification and Validation provides Model Advisor MAAB checks which
correspond to a subset of MAAB guidelines. You can run the checks using the Model
Advisor.

The MAAB guidelines and corresponding Model Advisor checks are summarized in the
following table. Not all guidelines have Model Advisor checks. For some of the guidelines
without Model Advisor checks, it is not possible to automate checking of the guideline.
Guidelines without a corresponding check are noted as not applicable. For information on

using the Model Advisor, see “Run Model Checks” in the Simulink documentation.

MAAB Guideline - Version |By Task > Model Advisor check
3.0 Modeling

Standards for

MAAB subfolder

na_0026: Consistent
software environment

Not applicable

na_0027: Use of only
standard library blocks

Not applicable

ar_0001: Filenames Naming “Check file names”
Conventions

ar_0002: Directory Naming “Check folder names”

names Conventions

na_0035: Adoption of
naming conventions

Not applicable

jc_0201: Usable Naming “Check subsystem names”

characters for Conventions

Subsystem names

je_0211: Usable Naming “Check port block names”

characters for Inport Conventions

blocks and Outport

blocks

jc_0221: Usable Naming “Check character usage in signal labels”
characters for signal line | Conventions

names

Model Advisor Checks for MAAB Guidelines

MAAB Guideline - Version
3.0

By Task >
Modeling
Standards for
MAAB subfolder

Model Advisor check

na_0030: Usable
characters for Simulink
Bus names

Not applicable

jc_0231: Usable
characters for block
names

Naming
Conventions

“Check character usage in block names”

na_0014: Use of local
language in Simulink
and Stateflow

Not applicable

na_0006: Guidelines for
mixed use of Simulink
and Stateflow

Not applicable

na_0007: Guidelines
for use of Flow Charts,
Truth Tables and State
Machines

Not applicable

db_0143: Similar block
types on the model
levels

Model
Architecture

“Check for mixing basic blocks and
subsystems”

db_0144: Use of
Subsystems

Not applicable

db_0040: Model
hierarchy

Not applicable

na_0037: Use of single
variable variant
conditionals

Not applicable

na_0020: Number
of inputs to variant
subsystems

Not applicable

na_0036: Default
variant

Not applicable

1-13

] Introduction

1-14

MAAB Guideline - Version
3.0

By Task >
Modeling
Standards for
MAAB subfolder

Model Advisor check

jc_0301: Controller
model

Not applicable

jc_0311: Top layer/root
level

Not applicable

jc_0321: Trigger layer

Not applicable

jc_0331: Structure layer

Not applicable

jc_0341: Data flow layer

Not applicable

jc_0011: Optimization Model “Check Implement logic signals as Boolean
parameters for Boolean |Configuration |data (vs. double)”
data types Options
jc_0021: Model Model “Check model diagnostic parameters”
diagnostic settings Configuration

Options
na_0004: Simulink Simulink “Check for Simulink diagrams using
model appearance nonstandard display attributes”
db_0043: Simulink font |Simulink “Check font formatting”
and font size
db_0042: Port block in |Simulink “Check positioning and configuration of
Simulink models ports”
na_0005: Port block Simulink “Check visibility of block port names”
name visibility in
Simulink models
jc_0081: Icon display for |Simulink “Check display for port blocks”

Port block

jm_0002: Block resizing

Not applicable

db_0142: Position of
block names

Simulink

“Check whether block names appear below
blocks”

je_0061: Display of block
names

Simulink

“Check the display attributes of block
names”

Model Advisor Checks for MAAB Guidelines

MAAB Guideline - Version |By Task > Model Advisor check
3.0 Modeling
Standards for
MAARB subfolder
db_0146: Triggered, Simulink “Check position of Trigger and Enable
enabled, conditional blocks”
Subsystems
db_0140: Display of Simulink “Check for nondefault block attributes”

basic block parameters

db_0032: Simulink
signal appearance

Not applicable

db_0141: Signal flow in
Simulink models

Not applicable

jc_0171: Maintaining
signal flow when using
Goto and From blocks

Not applicable

na_0032: Use of merge
blocks

Not applicable

jm_0010: Port block
names in Simulink
models

Simulink

“Check for matching port and signal names”

jc_0281: Naming of
Trigger Port block and
Enable Port block

Simulink

“Check Trigger and Enable block names”

na_0008: Display of
labels on signals

Simulink

“Check signal line labels”

na_0009: Entry versus
propagation of signal
labels

Simulink

“Check for propagated signal labels”

db_0097: Position of
labels for signals and
busses

Not applicable

db_0081: Unconnected
signals, block inputs and
block outputs

Simulink

“Check for unconnected ports and signal
lines”

1-15

] Introduction

1-16

MAAB Guideline - Version
3.0

By Task >
Modeling
Standards for
MAAB subfolder

Model Advisor check

na_0003: Simple
logical expressions in If
Condition block

Not applicable

na_0002: Appropriate
implementation of
fundamental logical and
numerical operations

Not applicable

jm_0001: Prohibited Simulink “Check for prohibited blocks in discrete
Simulink standard controllers”

blocks inside controllers

hd_0001: Prohibited Simulink “Check for prohibited sink blocks”
Simulink sinks

na_0011: Scope of Goto |Simulink “Check scope of From and Goto blocks”
and From blocks

jc_0141: Use of the Simulink “Check usage of Switch blocks”

Switch block

jc_0121: Use of the Sum
block

Not applicable

jc_0131: Use of
Relational Operator
block

Simulink

“Check usage of Relational Operator blocks

”

jc_0161: Use of Data

Not applicable

Store Read/Write/

Memory blocks

db_0112: Indexing Simulink “Check for indexing in blocks”
na_0010: Grouping data |Simulink “Check usage of buses and Mux blocks”
flows into signals

db_0110: Tunable Simulink “Check usage of tunable parameters in

parameters in basic
blocks

blocks”

Model Advisor Checks for MAAB Guidelines

MAAB Guideline - Version
3.0

By Task >
Modeling
Standards for
MAAB subfolder

Model Advisor check

na_0012: Use of Switch
vs. If-Then-Else Action
Subsystem

Not applicable

db_0114: Simulink
patterns for If-then-else-
if constructs

Not applicable

db_0115: Simulink
patterns for case
constructs

Not applicable

na_0028: Use of If-Then-
Else Action Subsystem
to Replace Multiple
Switches

Not applicable

db_0116: Simulink
patterns for logical

constructs with logical
blocks

Not applicable

db_0117: Simulink
patterns for vector
signals

Not applicable

jc_0351: Methods of

Not applicable

initialization

jc_0111: Direction of Simulink “Check orientation of Subsystem blocks”
Subsystem

db_0123: Stateflow port |Stateflow “Check for mismatches between names of

names

Stateflow ports and associated signals”

db_0129: Stateflow
transition appearance

Not applicable

db_0137: States in state
machines

Stateflow

“Check usage of exclusive and default states
in state machines”

1-17

] Introduction

1-18

MAAB Guideline - Version
3.0

By Task >
Modeling

Standards for
MAAB subfolder

Model Advisor check

db_0133: Use of patterns
for flow charts

Not applicable

db_0132: Transitions in |Stateflow “Check Transition orientations in flow
flow charts charts”

jc_0501: Format of Stateflow “Check entry formatting in State blocks in
entries in a State block Stateflow charts”

jc_0511: Setting the Stateflow “Check return value assignments of
return value from a graphical functions in Stateflow charts”
graphical function

jc_0531: Placement of Stateflow “Check default transition placement in
the default transition Stateflow charts”

jc_0521: Use of the Stateflow “Check usage of return values from a
return value from graphical function in Stateflow charts”
graphical functions

na_0001: Bitwise Stateflow “Check for bitwise operations in Stateflow
Stateflow operators charts”

jc_0451: Use of unary Stateflow “Check for unary minus operations on
minus on unsigned unsigned integers in Stateflow charts”
integers in Stateflow

na_0013: Comparison Stateflow “Check for comparison operations in
operation in Stateflow Stateflow charts”

db_0122: Stateflow Stateflow “Check for Strong Data Typing with
and Simulink interface Simulink I/O0”

signals and parameters

db_0125: Scope of Stateflow “Check Stateflow data objects with local
internal signals and scope”

local auxiliary variables

jc_0481: Use of hard Stateflow “Check for equality operations between

equality comparisons for
floating point numbers
in Stateflow

floating-point expressions in Stateflow
charts”

Model Advisor Checks for MAAB Guidelines

MAAB Guideline - Version
3.0

By Task >
Modeling
Standards for
MAAB subfolder

Model Advisor check

jc_0491: Reuse of
variables within a single
Stateflow scope

Not applicable

jc_0541: Use of tunable
parameters in Stateflow

Not applicable

db_0127: MATLAB Stateflow “Check for MATLAB expressions in
commands in Stateflow Stateflow charts”
jm_0011: Pointers in Stateflow “Check for pointers in Stateflow charts”

Stateflow

db_0126: Scope of events

Not applicable

jm_0012: Event
broadcasts

Stateflow

“Check for event broadcasts in Stateflow
charts”

db_0150: State machine
patterns for conditions

Not applicable

db_0151: State machine
patterns for transition
actions

Stateflow

“Check transition actions in Stateflow
charts”

db_0148: Flow chart
patterns for conditions

Not applicable

db_0149: Flow chart
patterns for condition
actions

Not applicable

db_0134: Flow chart
patterns for If constructs

Not applicable

db_0159: Flow chart
patterns for case
constructs

Not applicable

db_0135: Flow chart
patterns for loop
constructs

Not applicable

1-19

] Introduction

1-20

MAAB Guideline - Version
3.0

By Task >
Modeling
Standards for
MAAB subfolder

Model Advisor check

na_0038: Levels in
Stateflow charts

Not applicable

na_0039: Use of
Simulink in Stateflow
charts

Not applicable

na_0040: Number of
states per container

Not applicable

na_0041: Selection of
function type

Not applicable

na_0042: Location of
Simulink functions

Not applicable

na_0033: Enumerated
Types Usage

Not applicable

na_0031: Definition of
default enumerated
value

Not applicable

na_0018: Number of
nested if/else and case
statement

MATLAB
Functions

“Check MATLAB Function metrics”

na_0019: Restricted
Variable Names

Not applicable

na_0025: MATLAB
Function Header

Not applicable

na_0034: MATLAB MATLAB “Check input and output settings of
Function block input/ Functions MATLAB Functions”

output settings

na_0024: Global MATLAB “Check MATLAB code for global variables”
Variables Functions

Model Advisor Checks for MAAB Guidelines

na_0022: Recommended |Not applicable
patterns for Switch/Case
statements

na_0016: Source lines of |MATLAB “Check MATLAB Function metrics”
MATLAB Functions Functions

na_0017: Number of Not applicable
called function levels

na_0021: Strings Not applicable

1-21

Software Environment

2 Software Environment

General Guidelines

na_0026: Consistent software environment
na_0027: Use of only standard library blocks

2-2

na_0026: Consistent software environment

na 0026: Consistent software environment

ID: Title

na_0026: Consistent software environment

Priority

Recommended

Scope

NA-MAAB

MATLAB Versions

See description

Prerequisites

None

Description

During software development, it is recommended that a consistent software environment

is used across the project. Software includes, but is not limited, to:

MATLAB
Simulink

C Compiler (for simulation)

2-3

2 Software Environment

* C Compiler (for target hardware)

Consistent software environment implies that the same version of the software is used
across the full project. The version number applies to any patches or extensions to the
software used by a group.

Rationale

* Readability

* Code Generation

See Also

* NASA Orion style guideline jh_0042: Required software

Last Changed

V3.0

Introduced in R2013a

2-4

na_0027: Use of only standard library blocks

na_0027: Use of only standard library blocks

ID: Title

na_0027: Use of only standard library blocks

Priority

Recommended

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

None

Description

Companies should specify a subset of Simulink blocks for use when developing models.
The block list can include custom block libraries developed by the company or third
parties. Models should be built only from these blocks.

Non-compliant blocks can be used during development. If non-compliant blocks are used,
they should be marked either with a color, icon and / or annotation. These blocks must be
removed prior to use in production code generation.

2-5

2 Software Environment

Rationale

Readability
Verification and Validation
Code Generation

Simulation

See Also

NASA Orion style guideline hyl_0201: Use of standard library blocks only

Last Changed

V3.0

Introduced in R2013a

2-6

Naming Conventions

* “General Guidelines” on page 3-2
+ “Model Content” on page 3-10

3 Naming Conventions

General Guidelines

* ar _0001: Filenames
* ar_0002: Directory names

* na_0035: Adoption of naming conventions

3-2

ar_0001: Filenames

ar_0001: Filenames

ID: Title

ar_0001: Filenames

Priority

Mandatory

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

A file name conforms to the following constraints:

Form

filename = name.extension

name: no leading digits, no blanks

3-3

3 Naming Conventions

3-4

+ extension: no blanks

Uniqueness

All file names within the parent project directory

Allowed Characters

name:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

extension:

abcdefghijklmnopgqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

Underscores

name:

+ Can use underscores to separate parts
+ Cannot have more than one consecutive underscore
+ Cannot start with an underscore

* Cannot end with an underscore
extension:

Should not use underscores

Rationale

* Readability
+ Workflow
* Code Generation

* Simulation

ar_0001: Filenames

Last Changed

V3.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Naming Conventions > Check file
names

For check details, see “Check file names”.

Introduced in R2010a

3-5

3 Naming Conventions

ar_0002: Directory names

Priority

Mandatory

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description
A directory name conforms to the following constraints:
Form

directory name = name

name: no leading digits, no blanks

Uniqueness

All directory names within the parent project directory

ar_0002: Directory names

Allowed characters

name:
abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _
Underscores

name:

Can use underscores to separate parts
Cannot have more than one consecutive underscore
Cannot start with an underscore

Cannot end with an underscore

Rationale

Readability
Workflow
Code Generation

Simulation

Last Changed

V1.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Naming Conventions > Check for

invalid model folder names

For check details, see “Check folder names”.

Introduced in R2010a

3-7

3 Naming Conventions

na_0035: Adoption of naming conventions

ID: Title

na_0035: Adoption of naming conventions

Priority

Recommended

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

None

Description

Adoption of a naming convention is recommended. A naming convention provides
guidance for naming blocks, signals, parameters and data types. Naming conventions
frequently cover issues such as:

Compliance with the programming language and downstream tools

Length

3-8

na_0035: Adoption of naming conventions

+ Use of symbols
* Readability

+ Use of underscores
Use of capitalization

+ Encoding information

+ Use of “meaningful” names

Standard abbreviations and acronyms
+ Data type
* Engineering units

Data ownership

* Memory type

Rationale

* Readability
+ Workflow
* Code Generation

+ Simulation

Last Changed

V3.0

Introduced in R2013a

3-9

3 Naming Conventions

Model Content

3-10

jc_0201: Usable characters for Subsystem names

jc_0211: Usable characters for Inport blocks and Outport blocks
jc_0221: Usable characters for signal line names

na_0030: Usable characters for Simulink Bus names

jc_0231: Usable characters for block names

na_0014: Use of local language in Simulink and Stateflow

jc_0201: Usable characters for Subsystem names

jc_0201: Usable characters for Subsystem names

ID: Title

jc_0201: Usable characters for Subsystem

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None
Description
The names of all Subsystem blocks should conform to the following constraints:

Form
name:

Should not start with a number

3-11

3 Naming Conventions

Should not include blank spaces
Should not include carriage returns
Allowed Characters

name:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

Underscores
name:

Can use underscores to separate parts
Cannot have more than one consecutive underscore
Cannot start with an underscore

Cannot end with an underscore

Rationale

Readability

Last Changed

V2.2

Model Advisor Check

By Task > Modeling Standards for MAAB > Naming Conventions > Check
whether subsystem block names include invalid characters

For check details, see “Check subsystem names”.

Introduced in R2010a

3-12

ic_0211: Usable characters for Inport blocks and Outport blocks

jc_0211: Usable characters for Inport blocks and
Outport blocks

ID: Title

jc_0211: Usable characters for Inport blocks and Outport blocks

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

The names of all Inport blocks and Output blocks should conform to the following
constraints:

Form

name:

3-13

3 Naming Conventions

3-14

Should not start with a number
Should not include blank spaces

Should not include carriage returns
Allowed Characters
name:

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789_

Underscores
name:

Can use underscores to separate parts
Cannot have more than one consecutive underscore
Cannot start with an underscore

Cannot end with an underscore

Rationale

Readability

Last Changed

V2.2

Model Advisor Check

By Task > Modeling Standards for MAAB > Naming Conventions > Check
whether Inport and Outport block names include invalid characters

For check details, see “Check port block names”.

ic_0211: Usable characters for Inport blocks and Outport blocks

Introduced in R2010a

3-15

3 Naming Conventions

jc_0221: Usable characters for signal line names

ID: Title

jc_0221: Usable characters for signal line names

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

Identifies named signals constraints

Form
name:

Should not start with a number

3-16

jc_0221: Usable characters for signal line names

Should not include blank spaces
Should not include any control characters
Should not include carriage returns
Allowed Characters
name:

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789_

Underscores
name:

Can use underscores to separate parts
Cannot have more than one consecutive underscore
Cannot start with an underscore

Cannot end with an underscore

Rationale

Readability

Last Changed

V2.2

Model Advisor Check

By Task > Modeling Standards for MAAB > Naming Conventions > Check
character usage in signal labels

For check details, see “Check character usage in signal labels”.

3-17

3 Naming Conventions

Introduced in R2010a

3-18

na_0030: Usable characters for Simulink Bus names

na_0030: Usable characters for Simulink Bus names

ID: Title

na_0030: Usable characters for Simulink Bus names

Priority

Strongly recommended

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

None
Description
All Simulink Bus names should conform to the following constraints:

Form

name:

Should not start with a number

3-19

3 Naming Conventions

Should not have blank spaces

Carriage returns are not allowed

Allowed Characters
name:
abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

Underscores
name:

Can use underscores to separate parts
Cannot have more than one consecutive underscore
Cannot start with an underscore

Cannot end with an underscore

Rationale

Readability

See Also

NASA Orion style guideline jh_0040: Usable characters for Simulink Bus Names

Last Changed

V3.0

Introduced in R2013a

3-20

jc_0231: Usable characters for block names

jc_0231: Usable characters for block names

ID: Title

jc_0231: Usable characters for block names

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

jc_0201: Usable characters for Subsystem names

Description

The names of all blocks should conform to the following constraints:

Form
name:

Should not start with a number

3-21

3 Naming Conventions

3-22

Should not include spaces at the beginning of a block name
Should not use double byte characters

Carriage returns are allowed

Allowed Characters

name:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

Note: This rule does not apply to Subsystem blocks.

Rationale

Readability

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Naming Conventions > Check
character usage in block names

For check details, see “Check character usage in block names”.

Introduced in R2010a

na_0014: Use of local language in Simulink and Stateflow

na_0014: Use of local language in Simulink and
Stateflow

ID: Title

na_0014: Use of local language in Simulink and Stateflow

Priority

Strongly recommended

Scope

J-MAAB

MATLAB Versions

All

Prerequisites

None

Description

The local language should be used in descriptive fields only. Descriptive fields are text
entry points that do not affect code generation or simulation. Examples of descriptive
fields include the Description field in the Block Properties dialog box.

3-23

3 Naming Conventions

3-24

Simulink Examples

* The Description field in the Block Properties dialog box

b Block PropertiesConstant

General || Black Arnotation “ Callbacks

zaege

Description: Text saved with the block in the model file.

Priority: Specifies the block's order of execution relative to other blocks in the
zame model.

Tae: Text that appearz in the block label that Simulink eenerates.

Dezcription:

Lozal language can be uged. :l

+ Text annotation entered directly in the model

D& *2R|& 1 2

D escription: Local language can be used,
Outl It
outz — lin2

Stateflow Examples

* The Description field of chart and state Properties

na_0014: Use of local language in Simulink and Stateflow

Mame: State
Parent: ichart! SF sample/Chart
Breakpointz: [~ State During [~ State Entry [~ State Exit

I_ Output State Activity

Description:

Local laneuaee can be used.

Document Linkl

(8] 4 Cancel Help Spply

Annotation description added using Add Note

3-25

3 Naming Conventions

3-26

Lecal language can be used

[condition]

Bdd Mote E:

il

action|
Copy laction}

Paste
Back

Note: It is possible that Simulink cannot open a model that includes local language
on different character encoding systems. Therefore, pay attention when using local
characters for exchanging models between countries.

Rationale

+ Readability

Last Changed

V2.0

Model Advisor Check

Not applicable

Introduced in R2010a

Model Architecture

* “Simulink and Stateflow Partitioning” on page 4-2

+ “Subsystem Hierarchies” on page 4-14

+ “J-MAAB Model Architecture Decomposition” on page 4-31

This document uses the term basic blocks to refer to blocks built into the Simulink block
libraries. “Basic Blocks” on page D-2 in Appendix D lists some examples of basic

blocks.

4 Model Architecture

Simulink and Stateflow Partitioning

na_0006: Guidelines for mixed use of Simulink and Stateflow
na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines

4-2

na_0006: Guidelines for mixed use of Simulink and Stateflow

na_0006: Guidelines for mixed use of Simulink and
Stateflow

ID: Title

na_0006: Guidelines for mixed use of Simulink and Stateflow

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

The choice of whether to use Simulink or Stateflow to model a given portion of the control
algorithm functionality should be driven by the nature of the behavior being modeled.

If the function primarily involves complicated logical operations, use Stateflow
diagrams.

4-3

4 Model Architecture

Use Stateflow diagrams to implement modal logic, where the control function to be
performed at the current time depends on a combination of past and present logical

conditions.

If the function primarily involves numerical operations, use Simulink features.

Specifics

If the primary nature of the function is logical, but some simple numerical
calculations are done to support the logic, implement the simple numerical functions

using the Stateflow action language.

==

¢ Wtivatad

A,

entrr AcivabichiCt = ActivatianCt +‘:>]//

v

=T
Flo B i Sndaon Tooi Add Hep p
B B = | D o0 e Rl
#fﬂﬁmﬂﬂﬂ[n‘ﬂlﬁrﬁ:ﬂumﬂf -\
L J
[=i i ond Actreationi_ond
.--"'"".-‘

,-'-""''_'—'_'_

Embedded simple
math operation

If the primary nature of the function is numeric, but some simple logical operations
are done to support the arithmetic, implement the simple logical functions with

Simulink blocks.

na_0006: Guidelines for mixed use of Simulink and Stateflow

=] nalnng pasce,. Subepstom Subeystam * i (=] JE|
Cl= Cdt des Jmubton Fgnet Iods Heb

O)SHS| & B |-= 4|k = imo [wena o

FRNCL |80

et i S0 Frands plAacrain i

Embedded simple
logic operations

+ If the primary nature of the function is logical, and some complicated numerical
calculations must be done to support the logic, use a Simulink subsystem to
implement the numerical calculations. The Stateflow software should invoke the
execution of the subsystem, using a function call.

Model Architecture

fo LR Vew [euidion Tock ddd el -

T L S S L 4 S NS B 4 NS B

{Rendy

S

Fie [di Vew Gision Foms Todk Heb
DiEH@ & 8 S Db w o [Hms =159 (S

D —imimss

I

s ™y ;
g e

ey -

Turstiong

s Toi_w1 Jint

TE k>

@) Dt AT Qe
ik _CWFscrofie T | »
MyTRILi L Sebays
- :‘_H'M J“HNLEJ.D;E‘;HE
(=¥

na_0006: Guidelines for mixed use of Simulink and Stateflow

Statellos [pobchart} noelfiibpert 5 iThack.THC

[Resatond]

DSd@ @ @ L5 1 2y sfion s = HmBdEi Bl
Esmims
T !
Ty g g™ 4
Bt [}
T -:1;|_m|::| *
If: }-—-—-—-i-ﬂ ut n::..;.;.f;@
e <i8l e d
G alf geteddp L SR T "d,'h.;_mi_“_.,;.-g - My Tmililiy PG Eebogs
Chast :
pa e | Fndnctwants 7

Use the Stateflow product to implement modal logic, where the control function

to be performed at the current time depends on a combination of past and present
logical conditions. (If there is a need to store the result of a logical condition test in a
Simulink model, for example, by storing a flag, this is an indicator of the presence of
modal logic, which should be modeled with Stateflow software.)

4 Model Architecture

[V st S006 a6 SL Eivgiineid allon

Bl Bt yow Souson Fame Lok Hee
DEW@ @ @ 53 D0) v [ied CHERASE REES

| Linfegltag | HLRngflag

| MG park 658, Brpbirreed abioni -
e [t Yeow dmddbon Fomab M W

il @ e e

F iR f i Frandteplame
Incorrect

4-8

na_0006: Guidelines for mixed use of Simulink and Stateflow

LT a6, 5F Bipbiced nbbon *

e [dt Yew Sedsbion Fgmat [ook Help
DEE@ By Dy ofm [JRDEBDSs REE
el T b G BB FE +
A =
R e R LinRag Furttieatall
' Sl y ey
.-_-_-'* Bl
Pt
AT e [
HLBGg Fanatiant il
Sudepdam
Brady 1 i i Froedinpliscrsin 4

Correct

Use Simulink to implement numerical expressions containing continuously-valued
states, such as: difference equations, integrals, derivatives, and filters.

4 Model Architecture

'E}m—"i e

Foacty Jior

Correct

4-10

na_0006: Guidelines for mixed use of Simulink and Stateflow

Rationale

Readability

Workflow

Simulation

Verification and Validation

Code Generation

See Also

“Driving Function Call Subsystems and Charts from Stateflow® Using Function Call
Outputs”

Last Changed

V2.0

Model Advisor Check

Not applicable

Introduced in R2010a

4-11

4 Model Architecture

4-12

na_0007: Guidelines for use of Flow Charts, Truth
Tables and State Machines

ID: Title

na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

na_0006: Guidelines for mixed use of Simulink and Stateflow

Description

Within Stateflow, the choice of whether to use a flow chart or a state chart to model a
given portion of the control algorithm functionality should be driven by the nature of the
behavior being modeled.

If the primary nature of the function segment is to calculate modes of operation or
discrete-valued states, use state charts. Some examples are:

na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines

+ Diagnostic models with pass, fail, abort, and conflict states
Model that calculates different modes of operation for a control algorithm

+ If the primary nature of the function segment involves i f-then-else statements,
use flow charts or truth tables.

Specifics
If the primary nature of a function segment is to calculate modes or states, but 1 f-

then-else statements are required, add a flow chart to a state within the state chart.
(See “Flow Chart Patterns” on page 7-72.)

Rationale

* Readability

* Workflow

* Simulation

* Verification and Validation

* Code Generation

Last Changed

V2.0

Model Advisor Check

Not applicable

Introduced in R2010a

4-13

4 Model Architecture

Subsystem Hierarchies

4-14

db_0143: Similar block types on the model levels
db_0144: Use of Subsystems

db_0040: Model hierarchy

na_0037: Use of single variable variant conditionals
na_0020: Number of inputs to variant subsystems
na_0036: Default variant

db_0143: Similar block types on the model levels

db_0143: Similar block types on the model levels

ID: Title

db_0143: Similar block types on the model levels

Priority

Strongly recommended

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

None

Description
To allow partitioning of the model into discrete units, every level of a model must be
designed with building blocks of the same type (i.e. only Subsystems or only “Basic

Blocks” on page D-2). The blocks listed in this guideline are used for signal routing.
You can place them at any level of the model.

Blocks that You Can Place at any Model Level

4-15

4 Model Architecture

4-16

Block

Example

Action port'

Auction

Bus Creator

Bus Selector

Case

Data Store Memory

Data Type Conversion

Convert [

Demux >t
Enable?
From a1

Function-Call Generator

db_0143: Similar block types on the model levels

Block

Example

Function-Call Split

&
Goto E
Ground EE}
If
Inport C::)
Merge ;Lug;>
Mux zl
Outport 1)

Rate Transition

Selector

VillES

Terminator

]

4-17

4 Model Architecture

4-18

Block Example

Trigger?

Unit Delay o 1 b

Z

!Action ports are not allowed at the root level of a model.
Starting in R2011b, the Enable block is allowed at the root level of the model.

3Starting in R2009a, the Trigger block is allowed at the root level of the model.

Note: If the Trigger or Enable blocks are placed at the root level of the model, then
the model will not simulate in a standalone mode. The model must be referenced using
the Model block.

Rationale

Readability
Workflow

Verification and Validation

Last Changed

V2.2

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check for systems that
mix primitive blocks and subsystems

For check details, see “Check for mixing basic blocks and subsystems”.

db_0143: Similar block types on the model levels

Introduced in R2010a

4-19

4 Model Architecture

4-20

db_0144: Use of Subsystems

ID: Title

db_0144: Use of Subsystems

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

Blocks in a Simulink diagram should be grouped together into subsystems based on
functional decomposition of the algorithm, or portion thereof, represented in the diagram.

Grouping blocks into subsystems primarily for the purpose of saving space in the
diagram should be avoided. Each subsystem in the diagram should represent a unit of
functionality required to accomplish the purpose of the model or submodel. Blocks can
also be grouped together based on behavioral variants or timing.

db_0144: Use of Subsystems

If creation of a subsystem is required for readability issues, then a virtual subsystem
should be used.

Rationale

Readability
Workflow
Verification and Validation

Code Generation

Last Changed

V2.2

Model Advisor Check

Not applicable

Introduced in R2010a

4-21

4 Model Architecture

db_0040: Model hierarchy

ID: Title

db_0040: Model hierarchy

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

The model hierarchy should correspond to the functional structure of the control system.

Rationale

Readability

4-22

db_0040: Model hierarchy

Workflow
Verification and Validation

Code Generation

Last Changed

V2.0

Model Advisor Check

Not applicable

Introduced in R2010a

4-23

4 Model Architecture

na_0037: Use of single variable variant conditionals

ID: Title

na_0037: Use of single variable variant conditionals

Priority

Recommended

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

None

Description
Variant conditional expressions should be composed using either a single variable with
compound conditions or multiple variables with a single condition. The default variant is

an exception to the second rule.

Correct: Multiple variables (INLINE / FUNCTION with single condition per line

4-24

na_0037: Use of single variable variant conditionals

Variant choices {list of child subsystems)

_d Marme {read-only) ariank object
Default_F_of _&

Condition {read-only

4 6]

Def aultiiar (INLINE==0} & (FUNC==0)
Function_F_of _4 Functionar (FUMC==1}
2{ Inline_F_of _& InLinetar (INLINE==1}

Correct: Single variable compound conditions

Variank choices (list of child subsystems)

Mame {read-only)
auktoTrans

variant object

Condition (read-only)

4 [&]

autaTrans (transType==23)||(transType==4)| [(transType==5)

(transType~=3)2@&(transTyper=4)88 trans Type~=5)&&(trans Type~=0)
{transType==0)

defaultTrans defaultTrans

2’ manualTrans manualTrans

&

Incorrect: Multiple variables, compound conditions

Yariant choices {list of child subsystems)

Mame {read-only)

aukoTrans

‘ariant objeck

Condition {read-only)
(INLINE==0)8transType==3)
defaultTrans incorrect_Default

({INLINE==0)2&24tr ans Type==31==0) &&{FUNC==0) &2 (transType~=2)
manualTrans incorrect_2 [FUNC==1)&2transType==2)

Y [

incorreck_1

]

Note

Use of enumerated variables is preferred in the Condition expressions. To improve the
readability of the screenshots used in the examples, numerical values were used.

Rationale

* Readability

+ Code Generation

Simulation

See Also

na_0036: Default variant

4-25

4 Model Architecture

Last Changed

V3.0

Introduced in R2013a

4-26

na_0020: Number of inputs to variant subsystems

na_0020: Number of inputs to variant subsystems

ID: Title

na_0020: Number of inputs to variant subsystems
Priority
Recommended

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

None

Description
Simulink requires variant subsystems to have the same number of inputs. However,

the variant subsystem might not use all of the inputs. In these instances, terminate the
unused inputs with the Terminator block.

Rationale

Readability

4-27

4 Model Architecture

4-28

Code Generation

Simulation

Last Changed

V3.0

Introduced in R2013a

na_0036: Default variant

na_0036: Default variant

ID: Title

na_0036: Default variant

Priority

Recommended

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

na_0037: Use of single variable variant conditionals

Description

All Variant subsystems and models should be configured so that one subsystem is always
selected. This can be achieved by doing one of the following:

Using a default variant.

Defining conditions that exhaustively cover all possible values of the conditional
variables. For example, defining conditions for true and false values of a Boolean.

4-29

4 Model Architecture

4-30

Correct

Variant choices (list of child subsyskams)

Mame (read-only) Variant obiject

Candition (read-orily)
Default_F_of _& defaultiar

(FUMCe=1)88 FUMNC ~=2)
Function_F_of _A funckioniar (FUMC==1)

E Inline_F _of _a inLinevar (FUMNC==2)

J [&]

Correct: Assumes FUNC and INLINE are Boolean

Variant choices (list of child subsyskems)

j Mame (read-only) ‘ariant object Condition (read-only)

— |Default_F_of_& Defaultiar (IMLIME==00} & (FUMNC==0)
7 Function_F_of _& Functionar (FUMC==1)

\E/ Inline_F_of _fA InLinetar (TMLIME==1}

Incorrect: No active subsystem ifFUNC not equal to 1 or 2.

Variant choices (list of child subsystems)

Mame {read-only) Wariant obijeck Condition {read-only)

4 6]

Function_F_of _& function'ar (FUNC==1}
Inline_F_of_& inLineYar (FUNC==2)
ional

Rationale

* Readability

Code Generation

Simulation

Last Changed

V3.0

Introduced in R2013a

J-MAAB Model Architecture Decomposition

J-MAAB Model Architecture Decomposition

jc_0301: Controller model
jc_0311: Top layer/root level
jc_0321: Trigger layer
jc_0331: Structure layer
jc_0341: Data flow layer

4-31

4 Model Architecture

4-32

jc_0301: Controller model

ID: Title

jc_0301: Controller model

Priority

Mandatory

Scope

J-MAAB

MATLAB Versions

All

Prerequisites

None

Description

Control models are organized using the following hierarchical structure. Details on each
layer are provided in corresponding rules.

Top layer (root level), jc_0311: Top layer/root level

Trigger layer, jc_0321: Trigger layer

Structure layer. je_0331: Structure layer

Data flow layer, jc_0341: Data flow layer

jc_0301: Controller model

Use of the Trigger level is optional. In the following figure, Type A shows the use of a

trigger level while Type B shows a model without a trigger level.

Typeh, TypeE
s Top Layer — |-v

El—- -|-El:i1- b0 --D _&ﬁ; |
o+ HeOf |oe —T : ::i_'

— Oa=a Aow
Laner
—-_.E :D"D" |3'E

EwEAT
EJENT +

ame ; —

—+ == | |zm .t

20

Stroctire Layer= Describe a processing timing,

L

Controller Model

Rationale

Workflow

Last Changed

V2.0

Model Advisor Check

Not applicable

Introduced in R2010a

4-33

4 Model Architecture

4-34

jc_0311: Top layer/root level

ID: Title

jc_0311: Top layer/root level

Priority

Mandatory

Scope

J-MAAB

MATLAB Versions

All

Prerequisites

None

Description
Items to describe in a top layer are as follows:

Overview: Explanation of model feature overview
Input: Input variables

Output: Output variables

ic_0311: Top layer/root level

| Inpat]
| Input?

——winputs

[inputd |—1—{imputs

- = —
: E E

output]

Outputl

Outputs

-

------ \\ Controllerd,
nput

Top Layer Example

Rationale

Workflow

Last Changed

V2.0

Model Advisor Check

Not applicable

Introduced in R2010a

4-35

4 Model Architecture

jc_0321: Trigger layer

ID: Title

jc_0321: Trigger layer

Priority

Mandatory

Scope

J-MAAB

MATLAB Versions

All

Prerequisites

None

Description

A trigger layer indicates the processing timing by using Triggered Subsystem or
Function-Call Subsystem blocks.

The blocks should set Priority, if needed.

The priority value must be displayed as a block annotation. You should be able to
understand the priority-based order without having to open the block.

4-36

jc_0321: Trigger layer

(T 7 3 Y
EventA EventB Taskdmsy Task2ms

A& & &

.

TimingA_function TimingE_function Taskdms_function Task2ms_function
Priority =1 Priority =2 Priority = 3 Priority =4

Trigger Layer Example

Rationale

Readability
Workflow

Code Generation

Last Changed

V2.0

Model Advisor Check

Not applicable

Introduced in R2010a

4-37

4 Model Architecture

jc_0331: Structure layer

ID: Title

jc_0331: Structure layer

Priority

Mandatory

Scope

J-MAAB

MATLAB Versions

All

Prerequisites

None

Description
Describe a structure layer like the following structure layer example.

In the case of Type B, specify sample time at an Inport block or a Subsystem block
to define task time of the subsystem.

In the case of Type B, use a block annotation at an Inport block or a Subsystem
block and display sample time to clarify task time of the subsystem.

A subsystem of a structure layer should be an atomic subsystem.

4-38

jc_0331: Structure layer

[]

Task2Im

I3

¥

Locall

kL 4

Localz Ouwtput2

L

Locald

1
Inputl
Input2
Component_B
Local2
(3 r—{nputs
Input3 Local?
Component_F

Output2

Component_H

Structure Layer Example (Type A: No Description of Processing Timing)

D

Inpurt
<tsample=0.002=

Inputd
<tzample=0.004>

EventA

Component_|
<tsample=-1>

Inputd

Localll

Locali2

Lo inputa

Local9f

Lacalld

Component_K

<tsample=-1>

Y

T

Component_J
<tsample=0 004>

L J

Locald
Locall0

Output3
Localll

Locali2

—{ 1)

outputs

Component_L
<tsample=0.002>

Structure Layer Example (Type B: Description of Processing Timing)

Rationale

* Readability

4-39

4 Model Architecture

Workflow

Code Generation

Last Changed

V2.0

Model Advisor Check

Not applicable

Introduced in R2010a

4-40

ic_0341: Data flow layer

jc_0341: Data flow layer

ID: Title

jc_0341: Data flow layer

Priority

Mandatory

Scope

J-MAAB

MATLAB Versions

All

Prerequisites

None

Description

Describe a data flow layer as in the following example. In the case of Type A, use a block
annotation at an Inport block and display its sample time to clarify execution timing of

the signal.

4-41

4 Model Architecture

Lnnecessary display in Typeh.

[
- Locald _ 4
h{mampltlﬂ.ﬂﬂz}‘

L
Output2

f
L J

Sublnput SubOutput

Local2
<tsample=0.002= Subﬂumpunent

F
Local3
<tsample=0.002>

Data Flow Layer Example

Rationale

Workflow

Last Changed

V2.0

Model Advisor Check

Not applicable

Introduced in R2010a

4-42

Model Configuration Options

5 Model Configuration Options
d P

Model Configuration Options

jc_0011: Optimization parameters for Boolean data types

jc_0021: Model diagnostic settings

5-2

ic_0011: Optimization parameters for Boolean data types

jc_0011: Optimization parameters for Boolean data
types

ID: Title

jc_0011: Optimization parameters for Boolean data types

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

na_0002: Appropriate implementation of fundamental logical and numerical operations

Description
The optimization option for Boolean data types must be enabled (on).
In the Configuration Parameters dialog box, on the Optimization pane, under

Simulation and code generation, select Implement logic signals as Boolean data
(vs. double).

5-3

5 Model Configuration Options
d P

Optimization
Simulation and code generation

| Block reduction

| Implement logic signals as Boolean data (vs. double)

Rationale

Workflow

Code Generation

Last Changed

V2.2

Starting in R2016a, the Implement logic signals as Boolean data (vs. double)
parameter is available on the All Parameters tab.

Model Advisor Check

By Task > Modeling Standards for MAAB > Model Configuration Options >
Check Implement logic signals as Boolean data (vs. double)

For check details, see “Check Implement logic signals as Boolean data (vs. double)”.

Introduced in R2010a

5-4

jc_0021: Model diagnostic settings

jc_0021: Model diagnostic settings

ID: Title

jc_0021: Model diagnostic settings

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description
The following diagnostics must be enabled. An enabled diagnostic is set to warning or

error. Setting the diagnostic option to none is not permitted. Diagnostics that are not
listed may be set to any value (none, warning, or error).

Solver Diagnostics

Algebraic loop

5-5

5 Model Configuration Options
d P

Minimize algebraic loop

Sample Time Diagnostics

Multitask rate transition

Data Validity Diagnostics
Inf or NaN block output
Duplicate data store names

Connectivity

Unconnected block input ports
Unconnected block output ports
Unconnected line

Unspecified bus object at root Outport block
Mux blocks used to create bus signals
Invalid function-call connection

Element name mismatch

Rationale
Workflow

Code Generation

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Model Configuration Options >
Check model diagnostic settings

5-6

jc_0021: Model diagnostic settings

For check details, see “Check model diagnostic parameters”.

Introduced in R2010a

5-7

Simulink

+ “Diagram Appearance” on page 6-2
+ “Signals” on page 6-42

+ “Block Usage” on page 6-53

* “Block Parameters” on page 6-80

* “Simulink Patterns” on page 6-88

6 Simulink

Diagram Appearance

6-2

na_0004: Simulink model appearance

db_0043: Simulink font and font size

db_0042: Port block in Simulink models

na_0005: Port block name visibility in Simulink models
jc_0081: Icon display for Port block

jm_0002: Block resizing

db_0142: Position of block names

jc_0061: Display of block names

db_0146: Triggered, enabled, conditional Subsystems
db_0140: Display of basic block parameters

db_0032: Simulink signal appearance

db_0141: Signal flow in Simulink models

jc_0171: Maintaining signal flow when using Goto and From blocks
na_0032: Use of merge blocks

jm_0010: Port block names in Simulink models

jc_0281: Naming of Trigger Port block and Enable Port block

na_0004: Simulink model appearance

na_0004: Simulink model appearance

ID: Title

na_0004: Simulink model appearance
Priority
Recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

The model appearance settings should conform to the following guidelines when the
model is released. You can change the settings during the development process.

View Options Setting
Model Browser Unchecked
Screen color White
Status Bar Checked

6-3

6 Simulink

6-4

View Options

Setting

Toolbar

Checked

Zoom factor

Normal (100%)

Block Display Options Setting
Background Color White
Foreground Color Black
Execution Context Indicator Unchecked
Library Link Display None
Linearization Indicators Checked
Model/Block I/0 Mismatch Unchecked
Model Block Version Unchecked
Sample Time Colors Unchecked
Sorted Order Unchecked
Signal Display Options Setting
Port Data Types Unchecked
Signal Dimensions Unchecked
Storage Class Unchecked
Test point Indicators Checked
Viewer Indicators Checked
Wide Nonscalar Lines Checked

Rationale

Readability

Last Changed

V2.0

na_0004: Simulink model appearance

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check for Simulink
diagrams that have nonstandard appearance attributes

For check details, see “Check for Simulink diagrams using nonstandard display
attributes”.

Introduced in R2010a

6-5

6 Simulink

db_0043: Simulink font and font size

ID: Title

db_0043: Simulink font and font size

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

All text elements (block names, block annotations, and signal labels) except free text
annotations within a model, must have the same font style and font size. Select font style
and font size for legibility.

Note: The selected font should be portable (for example, the Simulink and Stateflow
default font) or convertible between platforms (for example, Arial or Helvetica 12pt).

6-6

db_0043: Simulink font and font size

Rationale

Readability

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check for difference in
font and font sizes

For check details, see “Check font formatting”.

Introduced in R2010a

6-7

6 Simulink

db_0042: Port block in Simulink models

ID: Title

db_0042: Port block in Simulink models

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description
In a Simulink model, ports must comply with the following rules:

Place Inport blocks on the left side of the diagram; you may move them to prevent
signal crossings.

Place Outport blocks on the right side of the diagram; you may move them to prevent
signal crossings.

6-8

db_0042: Port block in Simulink models

* You may use duplicate Inport blocks at the subsystem level, if required, but avoid
doing so, if possible.

* Do not use duplicate Inport blocks at the root level.

4 rETD
% H== N

-.El_' <Thred_Reg®
:|E

V2Cal
<Siphinda:

L J

v

b J

T

@ TransTgn

SlpCalz

Correct
{3 {2 Rl
e
WO Cal =
i r/’_\j . sEliphiada™
-‘,-!.1"\:.__.‘/] SlipCale
Incorrect

Notes on the incorrect model

* Inport 2 should be moved in so it does not cross the feedback loop lines.

* Outport 1 should be moved to the right side of the diagram.

6-9

6 Simulink

Rationale

Readability

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check for invalid port
positioning and configuration

For check details, see “Check positioning and configuration of ports”.

Introduced in R2010a

6-10

na_0005: Port block name visibility in Simulink models

na_0005: Port block name visibility in Simulink
models

ID: Title

na_0005: Port block name visibility in Simulink models

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

For some items it is not possible to define a single approach that is applicable to

all organizations’ internal processes. However, it is important that within a given
organization, a single consistent approach is followed. An organization applying the
guidelines must enforce one of the following alternatives.

Apply one of the following practices:

6-11

6 Simulink

6-12

* The name of an Inport or Outport block is not hidden. (Format > Hide Name is

not allowed.)

EngRFH_LF
EngRFM_LP

| EngRFM_LF

2 EngRPM_UnFil

EngRPM_UnFilt

| EngRFW_UnFilt

EngineRPM_Filter

EngRPM_Fitt - — {1
A e gRPN_Fi

EngRFM_Filt

* The name of an Inport or Outport block must be hidden. (Format > Hide Name is

used.)

Exception: The names cannot be hidden inside library subsystem blocks.

E]
= EngRFW_LF

4
=, EngRFM_UnFilt

EngineRPM_Filter

{1 F—————m<SigLabel
-~ Siglatel e

LabedF rom5ub

Engrei_ i T (2

<L abelFrom3ub>

Correct: Use of signal label

Rationale

Readability

Last Changed

V2.0

na_0005: Port block name visibility in Simulink models

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check visibility of port
block names

For check details, see “Check visibility of block port names”.

Introduced in R2010a

6-13

6 Simulink

jc_0081: Icon display for Port block

ID: Title

jc_0081: Icon display for Port block
Priority
Recommended

Scope

MAAB

MATLAB Versions

R14 and later

Prerequisites

None

Description

The Icon display setting should be set to Port number for Inport and Outport blocks.

Correct

6-14

ic_0081: Icon display for Port block

N

Incorrect

T e 2

Incorrect

Rationale

Readability

Last Changed

V2.2

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check display for port
blocks

For check details, see “Check display for port blocks”.

Introduced in R2010a

6-15

6 Simulink

6-16

jm_0002: Block resizing

ID: Title

jm_0002: Block resizing

Priority

Mandatory

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

All blocks in a model must be sized such that the icon is completely visible and
recognizable. In particular, any displayed text (for example, tunable parameters, file
names, or equations) in the icon must be readable.

This guideline requires that you resize blocks with variable icons or blocks with a
variable number of inputs and outputs. In some cases, it may not be practical or desirable
to resize the icon of a subsystem block so that all of the input and output names within

jm_0002: Block resizing

it are readable. In such cases, you may hide the names in the icon by using a mask
or by hiding the names in the subsystem associated with the icon. If you do this, the
signal lines coming into and out of the subsystem block should be clearly labeled in close

proximity to the block.

|mnahlsr_narame|9r_valua F

Canstant
Gain Frarm
Correct

Constant

B> B

Galn Fram

Incorrect

Rationale

Readability

Last Changed

V2.0

1
7+05
Discrele
Transter Fen

fiowa]

Data Type
Caorvarsion

surm

1
ErD.5

+ | Discrate
* Transfer Fen

Sum

Data Type
Conversion

Model Advisor Check

Not applicable

et _signad

nput_sigra?
gl _Sagrd
it _sigrs

oulpu_signal

subsysiem

subsystern

6-17

6 Simulink

Introduced in R2010a

6-18

db_0142: Position of block names

db_0142: Position of block names

ID: Title

db_0142: Position of block names

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

If shown, place the name of a block below the block.

0.08=
I: 1 } ErgRFMRaw ™ EngRFMFilt .{I}

z-0.95

EngSignal_LowPass

Correct

6-19

6 Simulink

TransSignal_LowPass

0.05z _
(Z} TransRPMRaw * 21,95 TransRPMFilt
Incorrect
Rationale

Readability

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check whether block
names do not appear below blocks

For check details, see “Check whether block names appear below blocks”.

Introduced in R2010a

6-20

jc_0061: Display of block names

jc_0061: Display of block names

ID: Title

jc_0061: Display of block names
Priority
Recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

Display a block name when it provides descriptive information.

Do not display a block name if the block function is known and understood from the
block appearance.

Rationale

Readability

6-21

6 Simulink

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check the display
attributes of block names

For check details, see “Check the display attributes of block names”.

Introduced in R2010a

6-22

db_0146: Triggered, enabled, conditional Subsystems

db_0146: Triggered, enabled, conditional
Subsystems

ID: Title

db_0146: Triggered, enabled, conditional Subsystems

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

The blocks that define subsystems as either conditional or iterative should be located at a
consistent location at the top of the subsystem diagram. These blocks are:

Action Port
Enable

For Iterator

6-23

6 Simulink

+ Switch Case Action
+ Trigger
* While Iterator

Note: The Action Port is associated with the 1 and Case blocks. The Trigger port is
also the function-call block.

@ <TransTg> -+

TatalTg ! C:

Correct
:1 <EngTg> -+
TatslTg ! [:j
:2 <TransTg® -+
Incorrect
Rationale

* Readability

Last Changed

V2.2

6-24

db_0146: Triggered, enabled, conditional Subsystems

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check position of
Trigger and Enable blocks

For check details, see “Check position of Trigger and Enable blocks”.

Introduced in R2010a

6-25

6 Simulink

db_0140: Display of basic block parameters

ID: Title

db_0140: Display of basic block parameters

Priority

Recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

Important block parameters modified from the default values should be displayed.

Note: The attribute string is one method to support the display of block parameters. The
block annotation tab allows you to add the desired attribute information. As of R2011b,
masking basic blocks is a supported method for displaying the information. This method
is allowed if the base icon is distinguishable.

6-26

db_0140: Display of basic block parameters

1

- Merge

Initial = 10 _—
tSample =.1 Initizl = [10 4]

Correct

1

z

=1

Unit Delay

Correct: Masked block

Rationale

Readability

Last Changed

V2.2

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check for display of
nondefault block attributes

For check details, see “Check for nondefault block attributes”.

Introduced in R2010a

6-27

6 Simulink

6-28

db_0032: Simulink signal appearance

ID: Title

db_0032: Simulink signal appearance

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description
Signal lines

Should not cross each other, if possible
Are drawn with right angles
Are not drawn one upon the other

Do not cross any blocks

db_0032: Simulink signal appearance

Should not split into more than two sublines at a single branching point

* 3

Constand Tarminator
—{5
Tamminatoe]
—5
Tearminator2
Correct
—&]
Tarminator
1 S
Corstant Teiminabart
Teminator2
Incorrect
Rationale
Readability

Last Changed

V2.0

Model Advisor Check

Not applicable

Introduced in R2010a

6-29

6 Simulink

db_0141: Signal flow in Simulink models

ID: Title

db_0141: Signal flow in Simulink models

Priority

Strongly recommended

Scope

MAAB

Versions

All

Prerequisites

None

Description

The signal flow in a model is from left to right.

Exception: Feedback loops

Sequential blocks or subsystems are arranged from left to right.

Exception: Feedback loops

6-30

db_0141: Signal flow in Simulink models

Parallel blocks or subsystems are arranged from top to bottom.

T

Cutpall

DI

[=
Inpts
R
gt
T
Ingestit
o]
[
gt
[
InpatF
[
(]
gt

{0

Rationale

Readability

Last Changed

V2.0

Model Advisor Check

Not applicable

Introduced in R2010a

6-31

6 Simulink

jc_0171: Maintaining signal flow when using Goto
and From blocks

ID: Title

jc_0171: Maintaining signal flow when using Goto and From blocks
Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

You must maintain visual depiction of signal flow between subsystems.

You can use Goto and From blocks if:

6-32

ic_0171: Maintaining signal flow when using Goto and From blocks

* You use at least one signal line between connected subsystems.

+ Subsystems connected in a feed-forward and feedback loop have at least one signal
line for each direction.

* Using Goto and From blocks to create buses or connect inputs to merge blocks are
exceptions to this rule.

L2} | PedalPer

FuelRgst

4

FuslPW

FuelPWMRaw FuslPW

»| FuslRgst FuslPWEst ——< [FuelPWEs] [FuelPWEs] FusPWEst FuetPWout - — (1)
; 1
EngRPMCor] - EngRPMCor FuelFault
z EngRPMCor]| EngRPMCaor

— 1 TorgEng Fuelbode |—- [FuelMode] TrqRequired ——
= TotalTorg
FuelFitter
FuelFault TotalTorg FuelReg
=) B EngRFM SpkRgst|—— ("2)

) 1 A
[FuelMode] » - | FusiMode EngRPMCor— ¢~ [EngRPMCor]
z

TrgRequi TorgEng
TorgEst —‘

=

Correct

6-33

6 Simulink

[FuelRqgst] FuslRgst
. 1
EngRPMCor] EngRPMCor

[TergEng] 1_
z

6-34

]
]
G
G

@
FusPWMRsw FuslPW
FuelPWEst
FuelFault
TorgEng FuslMode
FuelFitter

[FuelFW]

[FuelPWEst]

EngRPMCor]|

[TotalTorg]

Y

FuelFauit

[FuelFault] >

¥

(D ——

- FuelMode

[1 >

[TrgRequired]

Incorrect

Rationale

* Readability

Last Changed

V2.2

TrgRequired

TotalTorg

SpkRgst

EngRPMCor

TorgEng

PedalPer

FuelRgst

FuslPW

FuelPWEst FuelPWout

EngRPMCor

TrgRequired
TotalTorg

b [FuelRgst]

S [TrgRequired]

FuelReq

b [Total Torg]
<]

— [TorgEng]

TorgEst

Model Advisor Check

Not applicable

ic_0171: Maintaining signal flow when using Goto and From blocks

Introduced in R2010a

6-35

6 Simulink

na_0032: Use of merge blocks

ID: Title

na_0032: Use of merge blocks

Priority

Strongly recommended

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

None

Description
When using Merge blocks:

Signals entering a merge block must not branch off to other blocks
With buses:

Buses must be identical This includes:

Number of elements

6-36

na_0032: Use of merge blocks

Element names
Element order
Element data type
Element size
Buses must be either all virtual or all nonvirtual

Bus lines entering a merge block must not branch off to other blocks.

Rationale

Workflow

Code Generation

Last Changed

V3.0

Model Advisor Check

Not applicable

Introduced in R2013a

6-37

6 Simulink

jm_0010: Port block names in Simulink models

ID: Title

jm_0010: Port block names in Simulink models

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

db_0042: Port block in Simulink models
na_0005: Port block name visibility in Simulink models

Description

For some items, though you may not be able to define a single approach for internal
processes of all organizations, within a given organization, try to follow a single,
consistent approach. An organization applying the guidelines must enforce one of the
following options:

Names of Inport and Outport blocks must match corresponding signal or
bus names.

6-38

im_0010: Port block names in Simulink models

Exceptions:
When any combination of an Inport block, an Outport block, and any other block
have the same block name, use a suffix or prefix on the Inport and Outport blocks.
* One common suffix / prefix is _in for Inport blocks and _out for Outport blocks.

You may use any suffix or prefix on the ports, however, the prefix that you select
must be consistent.

+ Library blocks and reusable subsystems that encapsulate generic functionality.

* When names of Inport and Outport blocks are hidden, apply a consistent
naming practice for the blocks. Suggested practices include leaving the default
names (for example, Outl), giving them the same name as the associated signal, or
giving them a shortened or mangled version of the name of the associated signal.

Rationale

* Readability
+ Workflow
+ Code Generation

+ Simulation

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check for mismatches
between names of ports and corresponding signals

For check details, see “Check for matching port and signal names”.

Introduced in R2010a

6-39

6 Simulink

jc_0281: Naming of Trigger Port block and Enable
Port block

ID: Title

jc_0281: Naming of Trigger Port block and Enable Port block

Priority

Strongly recommended

Scope

J-MAAB

MATLAB Versions

All

Prerequisites

None

Description

For Trigger and Enable port blocks, match the block name of the signal triggering the
subsystem.

6-40

ic_0281: Naming of Trigger Port block and Enable Port block

DSe&E& »

Task2m51
TaskZms
A
\I-\ |[100% | | Z

Rationale

Readability

Code Generation

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check Trigger and
Enable block port names

For check details, see “Check Trigger and Enable block names”.

Introduced in R2010a

6-41

6 Simulink

Signals

6-42

na_0008: Display of labels on signals

na_0009: Entry versus propagation of signal labels

db_0097: Position of labels for signals and busses

db_0081: Unconnected signals, block inputs and block outputs

The preceding guidelines apply to signals and signal labels. For background information,
see “Signals and Signal Labels” on page D-3.

Some of the preceding guidelines refer to basic blocks. For an explanation of the meaning
and some examples, see “Basic Blocks” on page D-2.

na_0008: Display of labels on signals

na_0008: Display of labels on signals

ID: Title

na_0008: Display of labels on signals

Priority

Recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description
A label must be displayed on a signal originating from the following blocks:

Inport block

From block (block icon exception applies — see the following Note
Subsystem block or Stateflow chart block (block icon exception applies)
Bus Selector block (the tool forces this to happen)

6-43

6 Simulink

+ Demux block
Selector block
+ Data Store Read block (block icon exception applies)
+ Constant block (block icon exception applies)
+ A label must be displayed on any signal connected to the following destination blocks
(directly or by way of a basic block that performs a nontransformative operation):
Outport block
Goto block
+ Data Store Write block
* Bus Creator block
Mux block
* Subsystem block
* Chart block

Note: Block icon exception (applicable only where called out): If the signal label
is visible in the originating block icon display, the connected signal does not need
to have the label displayed, unless the signal label is needed elsewhere due to a
destination-based rule.

InPark
AMND S
VailidStart !
Crank

Correct

AND

Incorrect

6-44

na_0008: Display of labels on signals

Rationale

Readability

Verification and Validation
Workflow

Verification and Validation

Code Generation

Last Changed

V2.2

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check signal line labels

For check details, see “Check signal line labels”.

Introduced in R2010a

6-45

6 Simulink

6-46

na_0009: Entry versus propagation of signal labels

ID: Title

na_0009: Entry versus propagation of signal labels

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

na_0008: Display of labels on signals

Description

If a label is present on a signal, the following rules define whether that label is created
there (entered directly on the signal) or propagated from its true source (inherited from
elsewhere in the model by using the less than (<) character).

Any displayed signal label must be entered for signals that:

Originate from an Inport at the Root (top) Level of a model

na_0009: Entry versus propagation of signal labels

+ Originate from a basic block that performs a transformative operation (For the
purpose of interpreting this rule only, the Bus Creator block, Mux block, and
Selector block are considered to be included among the blocks that perform
transformative operations.)

* Any displayed signal label must be propagated for signals that:

+ Originate from an Inport block in a nested subsystem

Exception: If the nested subsystem is a library subsystem, a label may be entered
on the signal coming from the Inport to accommodate reuse of the library block.

* Originate from a basic block that performs a nontransformative operation

* Originate from a Subsystem or Stateflow chart block
Exception: If the connection originates from the output of a library subsystem

block instance, a new label may be entered on the signal to accommodate reuse of
the library block.

¥

) ErgTa X
e

2} Loyl

L

BTy

Fus e B BT

Ready 0

N L

EngTy .@

: £ : . TetalTy Ta T
= ST B il

Agd

Rationale

* Readability

+ Verification and Validation

6-47

6 Simulink

Workflow
Verification and Validation

Code Generation

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check for propagated
labels on signal lines

For check details, see “Check for propagated signal labels”.

Introduced in R2010a

6-48

db_0097: Position of labels for signals and busses

db_0097: Position of labels for signals and busses

ID: Title

db_0097: Position of labels for signals and busses

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

The labels must be visually associated with the corresponding signal and not overlap
other labels, signals, or blocks.

Labels should be located consistently below horizontal lines and close to the
corresponding source or destination block.

6-49

6 Simulink

Rationale

Readability

Last Changed

V2.0

Model Advisor Check

Not applicable

Introduced in R2010a

6-50

db_0081: Unconnected signals, block inputs and block outputs

db_0081: Unconnected signals, block inputs and
block outputs

ID: Title

db_0081: Unconnected signals, block inputs and block outputs

Priority

Mandatory

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description
A system must not have any:

Unconnected subsystem or basic block inputs
Unconnected subsystem or basic block outputs

Unconnected signal lines

6-51

6 Simulink

6-52

In addition:

An otherwise unconnected input should be connected to a ground block

An otherwise unconnected output should be connected to a terminator block

Rationale

Readability
Workflow

Verification and Validation

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check whether model
has unconnected block input ports, output ports, or signal lines

For check details, see “Check for unconnected ports and signal lines”.

Introduced in R2010a

Block Usage

Block Usage

* na_0003: Simple logical expressions in If Condition block

* na_0002: Appropriate implementation of fundamental logical and numerical
operations

+ jm_0001: Prohibited Simulink standard blocks inside controllers
* hd_0001: Prohibited Simulink sinks

* mna_0011: Scope of Goto and From blocks

* jc_0141: Use of the Switch block

* jc_0121: Use of the Sum block

* jc_0131: Use of Relational Operator block

* jc_0161: Use of Data Store Read/Write/Memory blocks

Some of the preceding guidelines refer to basic blocks. For an explanation of the meaning
and some examples, see “Basic Blocks” on page D-2.

6-53

6 Simulink

na_0003: Simple logical expressions in If Condition

block

ID: Title

na_0003: Simple logical expressions in If Condition block

Priority

Mandatory

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

A logical expression may be implemented within an If Condition block instead of building
it up with logical operation blocks, if the expression contains two or fewer primary
expressions. A primary expression is defined as one of the following:

An input

A constant

6-54

na_0003: Simple logical expressions in If Condition block

* A constant parameter

+ A parenthesized expression containing no operators except zero or one instance of the
following operators: <, <=, >, >=, ~= == ~ (See the following examples.)

Exception

A logical expression may contain more than two primary expressions if both of the
following are true:
* The primary expressions are all inputs

* Only one type of logical operator is present

Examples of Acceptable Exceptions

cul||u2||u3]||ud|]ub
+ ul && u2 && u3 && u4

Examples of Primary Expressions

+ ul

+ 5

+ K

+ (Ul1>0)

c (Ul<=0)

+ (U1>U2

© (rul)

* (EngineState.ENGINE_RUNNING)

Examples of Acceptable Logical Expressions
c ul | u2

* (Ul>0)&& (Ul <20)
* (Ul>0)&& (U2<ul)

6-55

6 Simulink

6-56

(Ul >0) && (~u2)

(EngineState.ENGINE_RUNNING > 0) && (PRNDLState.PRNDL_PARK)

Note: In this example, EngineState.ENGINE_ RUNNING and
PRNDLState.PRNDL_PARK are enumeration literals.

Examples of Unacceptable Logical Expressions

ul && u2 || u3

(too many primary expressions)

ul && (U2 | | ul)

(unacceptable operator within primary
expression)

(ul>0) && (Ul < 20) && (U2 > 5)

(too many primary expressions that are not
Inputs)

(ul>0) && ((2*u2) > 6)

(unacceptable operator within primary
expression)

Rationale

Readability
Workflow

Code Generation

Last Changed

V2.2

Model Advisor Check

Not applicable

Introduced in R2010a

na_0002: Appropriate implementation of fundamental logical and numerical operations

na_0002: Appropriate implementation of
fundamental logical and numerical operations

ID: Title

na_0002: Appropriate implementation of fundamental logical and numerical operations

Priority

Mandatory

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

Blocks that are intended to perform numerical operations must not be used to perform
logical operations.

6-57

6 Simulink

a doublza I
double
C doublz)

. | double

Incorrect

* Alogical output should never be connected directly to the input of blocks that operate
on numerical inputs.

* The result of a logical expression fragment should never be operated on by a
numerical operator.

!

lamp | bookean P double

!

Incorrect

* Blocks that are intended to perform logical operations must not be used to perform
numerical operations.

* A numerical output should never be connected to the input of blocks that operate on
logical inputs.

6-58

na_0002: Appropriate implementation of fundamental logical and numerical operations

A MDD

Incorrect

Rationale

Readability
Verification and Validation
Workflow

Code Generation

Last Changed

V3.0

Model Advisor Check

Not applicable

Introduced in R2010a

6-59

6 Simulink

jm_0001: Prohibited Simulink standard blocks inside
controllers

ID: Title

jm_0001: Prohibited Simulink standard blocks inside controllers

Priority

Mandatory

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

Controller models must be designed from discrete blocks.

MathWorks “Simulink Block Data Type Support” table provides a list of blocks that
support production code generation. See “Simulink Block Data Type Support”.

6-60

jm_0001: Prohibited Simulink standard blocks inside controllers

+ Use blocks listed as “Code Generation Support.”

Do not use blocks listed as “Not recommended for production code.” See footnote 4

in the table.

* In addition to the blocks defined by the above rule, do not use the following blocks:

The following sources are not allowed:

Band-Limited
White Noise

Pulse Generator

Sine Wave

R4

Pt

e

Random Number

Uniform Random
Number

WAL b
A

The following additional blocks are not allowed. The MAAB Style guide group
recommends not using the following blocks. The list may be extended by individual

companies.

Slider Gain

Manual Switch

Complex to
Magnitude-Angle

Magnitude-Angle
to Complex

Complex to Real-
Imag

v

E,e(u_‘] 5
Timgu) b

Real-Imag to
Complex

Polynomial

Interpreted
MATLAB Function

Goto Tag
Visibility

Probe

Im="

S
W

Fiu)
OP)=5

Interpreted
MATLAB Fen

o

A0, T=:0 0], C:0, L0

A

6-61

6 Simulink

Rationale

Readability

Verification and Validation
Workflow

Code Generation

Simulation

Last Changed

V2.2

Model Advisor Checks

By Task > Modeling Standards for MAAB > Simulink > Check for blocks not
recommended for C/C++ production code deployment

For check details, see “Check for blocks not recommended for C/C++ production code
deployment”.

By Task > Modeling Standards for MAAB > Simulink > Check for blocks that
are not discrete

For check details, see “Check for prohibited blocks in discrete controllers”.

Introduced in R2010a

6-62

hd_0001: Prohibited Simulink sinks

hd _0001: Prohibited Simulink sinks

ID: Title

hd_0001: Prohibited Simulink sinks

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description
Controller models must be designed from discrete blocks.

The following sink blocks are not allowed:

To File Stop

X untiched mat Simulation

6-63

6 Simulink

To
Workspace ¥ simout

Note: Simulink Scope and Display blocks are allowed in the model diagram. Consider
using Simulink Signal logging and Signal and Scope Manager for data logging and
viewing requirements.

Rationale

Verification and Validation
Code Generation

Simulation

Last Changed

V2.2

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check for prohibited
sink blocks

For check details, see “Check for prohibited sink blocks”.

Introduced in R2010a

6-64

na_0011: Scope of Goto and From blocks

na_0011: Scope of Goto and From blocks

ID: Title

na_0011: Scope of Goto and From blocks

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description
For signal flows, the following rules apply:

From and Goto blocks must use local scope.

Note: Control flow signals may use global scope.

6-65

6 Simulink

Control flow signals are output from:

* Function-call generators
+ IT and Case blocks
+ Function call outputs from MATLAB and Stateflow blocks

Control flow signals are identified as dashed lines in the model after updating a Simulink
model.

“& Sink Block Parameters: Goto &
Goto

Send signals to From blocks that have the specified tag. I tag visibility is
'scoped’, then a Goto Tag Visibility block must be used to define the visibility
of the tag. The block icon displays the selected tag name (local tags are
enclosed in brackets, [], and scoped tag names are enclosed in braces, {}).

Farameters

Goto tag: GotoScope Rename All...| [Tag visibility: [local -

[GotoScope] . |
|
FromFunc()

(1 Wna 0011 _input na 0011 output———— ("1)

Rationale

* Readability

+ Verification and Validation
* Workflow

+ Code Generation

+ Simulation

Last Changed

V2.2

6-66

na_0011: Scope of Goto and From blocks

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check for proper scope
of From and Goto blocks

For check details, see “Check scope of From and Goto blocks”.

Introduced in R2010a

6-67

6 Simulink

jc_0141: Use of the Switch block

ID: Title

jc_0141: Use of the Switch block

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

The switch condition, input 2, must be a Boolean value.

The block parameter, Criteria for passing first input, should be set to u2~=0.

Simiteh

6-68

jc_0141: Use of the Switch block

E Function Block Parameters: Switch x|

— Switch

Pasz through input 1 when input 2 zatisfies the zelected criterion; atherwize, pazs
through input 3. The inputs are numbered top to bottom [or left ta ight]. The input 1
pazs-through criteria are input 2 greater than or equal, greater than, or not equal to
the threzhald. The first and third input parts are data ports, and the second input port
iz the control port,

b air ISignaIData Types

Critenia for pazsing frst input: | u2 ~=10 LI
Threzhold: w2 »= Threshold
o

Correct

@ double

Inl

b ity | Signal Data Typez I

Criteria for passingdist input: |uz »= Threshold Y

T hreshold:
|20

Incorrect

Rationale

+ Readability
* Verification and Validation
+ Workflow

6-69

6 Simulink

Code Generation

Last Changed

V2.2

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check for proper use of
Switch blocks

For check details, see “Check usage of Switch blocks”.

Introduced in R2010a

6-70

ic_0121: Use of the Sum block

jc_0121: Use of the Sum block

ID: Title

jc_0121: Use of the Sum block

Priority

Recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

Sum blocks should:

Use the “rectangular” shape.

Be sized so that the input signals do not overlap.

6-71

6 Simulink

Correct

Incorrect

You may use the round shape in feedback loops.

* There should be no more than three inputs.
* Position the inputs at 90,180,270 degrees.

+ Position the output at 0 degrees.

6-72

ic_0121: Use of the Sum block

inpug autt

output \

Gaini

Correct

Incorrect

6-73

6 Simulink

6-74

Incorrect

Rationale

Readability

Last Changed

V2.0

Model Advisor Check

Not applicable

ic_0121: Use of the Sum block

Introduced in R2010a

6-75

6 Simulink

jc_0131: Use of Relational Operator block

ID: Title

jc_0131: Use of Relational Operator block

Priority

Recommended

Scope

J-MAAB

MATLAB Versions

All

Prerequisites

None

Description

When the relational operator is used to compare a signal to a constant value, the
constant input should be the second (lower) input signal.

6-76

ic_0131: Use of Relational Operator block

8
]]
W

Pl ol
Operabor

L]
— EE
Ty
P lainarial
Cipesraios
Incorrect
Rationale
Readability

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check for proper
position of constants used in Relational Operator blocks

For check details, see “Check usage of Relational Operator blocks”.

Introduced in R2010a

6-77

6 Simulink

jc_0161: Use of Data Store Read/Write/Memory
blocks

ID: Title

jc_0161: Use of Data Store Read/Write/Memory blocks
Priority
Strongly recommended

Scope

J-MAAB

MATLAB Versions

All

Prerequisites

jc_0341: Data flow layer

Description
Data Store Memory, Data Store Read, and Data Store Write blocks are

Prohibited in a data flow layer

Allowed between subsystems running at different rates

6-78

jc_0161: Use of Data Store Read/Write/Memory blocks

Rationale

Readability
Workflow

Last Changed

V2.0

Model Advisor Check

Not applicable

Introduced in R2010a

6-79

6 Simulink

Block Parameters

* db_0112: Indexing
* na_0010: Grouping data flows into signals

* db_0110: Tunable parameters in basic blocks

Some of the preceding guidelines refer to basic blocks. For an explanation of the meaning
and some examples, see “Basic Blocks” on page D-2.

6-80

db_0112: Indexing

db_0112: Indexing

ID: Title

db_0112: Indexing

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

Use a consistent vector indexing method for all blocks.

When possible, use zero-based indexing to improve code efficiency. However, since
MATLAB blocks do not support zero-based indexing, one-based indexing can be used for

models containing MATLAB blocks.

6-81

6 Simulink

See Also

“cgsl_0101: Zero-based indexing”

“hisl_0021: Consistent vector indexing method”

Rationale

Readability
Verification and Validation

Code Generation

Last Changed

V2.2

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check for blocks not
using one-based indexing

For check details, see “Check for indexing in blocks”.

Introduced in R2010a

6-82

na_0010: Grouping data flows into signals

na_0010: Grouping data flows into signals

ID: Title

na_0010: Grouping data flows into signals

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

Vectors

The individual scalar signals composing a vector must have common functionality, data
types, dimensions, and units. The most common example of a vector signal is sensor or
actuator data that is grouped into an array indexed by location. The output of a Mux
block must always be a vector. The inputs to a Mux block must always be scalars.

6-83

6 Simulink

Busses

Signals that do not meet criteria for use as a vector, as previously described, must only be
grouped into bus signals. Use Bus Selector blocks only with a bus signal input; do not
use them to extract scalar signals from vector signals.

Examples

Some examples of vector signals include:

Vector type Size

Row vector [1n]

Column vector [n 1]

Wheel speed vector [1 Number of wheels]
Cylinder vector [1 Number of cylinders]
Position vector based on 2D [12]

coordinates

Position vector based on 3D [1 3]

coordinates

Some examples of bus signals include:

Bus type Elements
Sensor Bus Force Vector [Fx, Fy, Fz]

Position
Wheel Speed Vector [y, O, Oy, O,,]

Acceleration

Pressure

Controller Bus Sensor Bus

Actuator Bus

Serial Data Bus Coolant Temperature

Engine Speed, Passenger Door Open

6-84

na_0010: Grouping data flows into signals

Rationale

Readability

Code Generation

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check for proper use of
signal buses and Mux block usage

For check details, see “Check usage of buses and Mux blocks”.

Introduced in R2010a

6-85

6 Simulink

db_0110: Tunable parameters in basic blocks

ID: Title

db_0110: Tunable parameters in basic blocks

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description
To ensure that a parameter is tunable, enter it in a block dialog field:

Without any expression.
Without a data type conversion.

Without selection of rows or columns.

6-86

db_0110: Tunable parameters in basic blocks

l hnable_parameter_valus F |_ tunable_pararmeber_vecior

Correct

}?‘ | tunable_parametar_amay

| hmakile_parameter_value™i F— | wnahle_paramebar_veclor~d

- [unable_parameser_aray™3]

| |r'.1E-_'Iurul:le_purumutel_'-'.lll_'l.':- }- | b.ln.l‘:hlu_p.lu'm-lur_w:'.\ol-il]

-3 | bunable_pdrdrmdtin_Smanyd1,1) I:

Incorrect

Rationale

* Readability

* Verification and Validation
* Workflow

+ Code Generation

+ Simulation

Last Changed

V2.2

Model Advisor Check

}

By Task > Modeling Standards for MAAB > Simulink > Check whether tunable
parameters specify expressions, data type conversions, or indexing operations

For check details, see “Check usage of tunable parameters in blocks”.

Introduced in R2010a

6-87

6 Simulink

Simulink Patterns

6-88

na_0012: Use of Switch vs. If-Then-Else Action Subsystem

db_0114: Simulink patterns for If-then-else-if constructs

db_0115: Simulink patterns for case constructs

na_0028: Use of If-Then-Else Action Subsystem to Replace Multiple Switches
db_0116: Simulink patterns for logical constructs with logical blocks
db_0117: Simulink patterns for vector signals

jc_0351: Methods of initialization

jc_0111: Direction of Subsystem

The preceding guidelines illustrate sample patterns used in Simulink diagrams. As such,
the patterns normally would be part of a much larger Simulink diagram.

Some of the preceding guidelines refer to basic blocks. For an explanation of the meaning
and some examples, see “Basic Blocks” on page D-2.

na_0012: Use of Switch vs. If-Then-Else Action Subsystem

na_0012: Use of Switch vs. If-Then-Else Action
Subsystem

ID: Title

na_0012: Use of Switch vs. If-Then-Else Action Subsystem

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

The Switch block should be used for modeling simple if-then-else structures, if the
associated then and else actions involve only the assignment of constant values.

6-89

6 Simulink

6-90

double

IF_“falue ————
baaolean dauble
»]

IF_Condition

double
Else_falue — —Jr

The if-then-else action subsystem construct:

* Should be used for modeling if-then-else structures, if the associated then and/or else
actions require complicated computations. This maximizes simulation efficiency and
the efficiency of generated code. (Note that even a basic block, for example a table
lookup, may require fairly complicated computations.)

fiul)
T———_
DynamicSlipFla . eise

Ot
TireSlipConst
.
»WheelSpeed €l5¢ (]
Outl
s EngSpeed u

CalculateTireSlip

L A

Merge

TireSlip

* Must be used for modeling if-then-else structures, if the purpose of the construct is to
avoid an undesirable numerical computation, such as division by zero.

+ Should be used for modeling if-then-else structures, if the explicit or implied then or

the else action is just to hold the associated output values.

In other cases, the degree of complexity of the then and/or else action computations and
the intelligence of the Simulink simulation and code generation engines determine the

appropriate construct.

These statements also apply to more complicated nested and cascaded if-then-else

structures and case structure implementations.

na_0012: Use of Switch vs. If-Then-Else Action Subsystem

Rationale

Readability
Verification and Validation
Workflow

Last Changed

V2.0

Model Advisor Check

Not applicable

Introduced in R2010a

6-91

6 Simulink

db_0114: Simulink patterns for If-then-else-if
constructs

ID: Title

db_0114: Simulink patterns for If-then-else-if constructs

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

Use the following patterns for If-then-else-if constructs within a Simulink model:

6-92

db_0114: Simulink patterns for If-then-else-if constructs

Equivalent Functionality Simulink Pattern

it then else if with blocks ::m —
if (If _Condition) { — T . ,\
output_signal = If Value; L - 1

¥ -

else if (Else_If _Condition) {
output_signal =

Else_IT _Value;

b
else {
output_signal =
Else_Value;

}

P
Elpn__Valua —

e
Ena_|d_Cansnes

(o Je= s

Equivalent Functionality

Simulink Pattern

if then else if with if/then/else subsystems

if(Fault_1 Active &
Fault_2_Active)
{

}
else if (Fault_1_Active |

Fault_2_Active)

ErrMsg = SaftyCrit;

) b b

{ [F=3 T
ErrMsg = DriveWarn;
i
else
{
ErrMsg = NoFaults;
i
Rationale

* Readability

Last Changed

V2.0

6-93

6 Simulink

Model Advisor Check

Not applicable

Introduced in R2010a

6-94

db_0115: Simulink patterns for case constructs

db_0115: Simulink patterns for case constructs

ID: Title

db_0115: Simulink patterns for case constructs

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

Use the following patterns for case constructs within a Simulink model:

6-95

6 Simulink

Equivalent Functionality

Simulink Pattern

case with Switch Case block

switch (PRNDL_Enum)
{
case 1
TgEstimate = ParkV;
break;
case 2
TgEstimae = RevV;
break;
default
TgEstimate = NeutralV;
break;

}

Rationale

Readability

Last Changed

V2.2

Model Advisor Check

Not applicable

Introduced in R2010a

6-96

na_0028: Use of If-Then-Else Action Subsystem to Replace Multiple Switches

na_0028: Use of If-Then-Else Action Subsystem to
Replace Multiple Switches

ID: Title

na_0028: Use of If-Then-Else Action Subsystem to Replace Multiple Switches

Priority

Recommended

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

na_0012: Use of Switch vs. If-Then-Else Action Subsystem
db_0144: Use of Subsystems

Description

The use of switch constructs should be limited, typically to 3 levels. Replace switch
constructs that have more than 3 levels with an If-Then-Else action subsystem construct.

6-97

6 Simulink

Incorrect

-

e
("]
D [rmes
EJE < m) I
—
4
-
—
[rmmE
o
B
L4

IO S

SwiEh Dt

6-98

na_0028: Use of If-Then-Else Action Subsystem to Replace Multiple Switches

Rationale

Readability

Last Changed

V3.0

Model Advisor Check

Not applicable

Introduced in R2013a

6-99

6 Simulink

db_0116: Simulink patterns for logical constructs
with logical blocks

ID: Title

db_0116: Simulink patterns for logical constructs with logical blocks

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

Use the following patterns for logical combinations within Simulink:

6-100

db_0116: Simulink patterns for logical constructs with logical blocks

Equivalent Functionality Simulink Pattern

Combination of logical signals: conjunctive

—_————P
input_signall

——————— o AND
input_signal2 o

I re————_
input_signal3

—_—
inpul_signald = [anD oR

Y

T output_signal
input_signals

——————
input_signalt

input_signal?

*"
input_signalg

Combination of logical signals: disjunctive

input_signal

inpuil_signal2 ~ 2

L

input_signal3

BT ——
inpul_signald OR

z
o

autput_signal
input_signals

input_signalé

inpui_signal? = 2

L

input_signalg

Rationale

+ Readability

6-101

6 Simulink

6-102

Last Changed

V1.0

Model Advisor Check

Not applicable

Introduced in R2010a

db_0117: Simulink patterns for vector signals

db_0117: Simulink patterns for vector signals

ID: Title

db_0117: Simulink patterns for vector signals
Priority
Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

Simulink is a vectorizable modeling language allowing for the direct processing of vector
data. Use the following patterns for vector signals within a Simulink model:

Equivalent Functionality Simulink Pattern

Vector loop o

for (i=0; s vecko _ii'bf_”_""f::i'—’: T
i<input_vector_size; i++) e

6-103

6 Simulink

Equivalent Functionality

Simulink Pattern

{
output_vector(i) =
input_vector(i) *
tunable_parameter_value;

}

Vector loop

for (i=0;
i<input_vector_size; i++)
{
output_vector(i) =
input_vector(i) *
tunable_parameter_vector(i);

}

——

p_abr

tumable_parameter_vector

L__ i

Gain

i

Vector loop

output_signal = 1;

for (i=0;
i<input_vector_size; i++)
{
output_signal =
output_signal *
input_vector(i);

}

input_wectar

Product

ol ﬂ output_signal

Vector loop

output_signal = 1;

for (i=0;
i<input_vector_size; i++)
{
output_signal =
output_signal /
input_vector(i);

}

input_svectar

.. e
TT
Product

output_signal

6-104

db_0117: Simulink patterns for vector signals

Equivalent Functionality

Simulink Pattern

Vector loop

for (i=0;
i<input_vector_size; i++)
{
output_vector (i) =
input_vector(i) +
tunable_parameter_value;

}

inpul_vector

output_vector
tunable_paramefter_value

Constant

Sum

Vector loop

for (i=0;
i<input_vector_size; i++)
{
output_vector(i) =
input_vector(i) +
tunable_parameter_vector(i);

}

inpul_vector

output_vector
tunable_paramater_vactor

Constant

Sum

Vector loop:

output_signal = 0;

for (i=0;
i<input_vector_size; i++)
{

output_signal =
output_signal +
input_vector(i);

}

o5 _
input_wectar output_signal

Sum

Vector loop:

output_signal = 0;

for (i=0;
i<input_vector_size; i++)
{
output_signal =
output_signal -
input_vector(i);

}

_ oy .
input_wectar output_signal
sSum

6-105

6 Simulink

Equivalent Functionality

Simulink Pattern

Minimum or maximum of a signal or a vector
over time:

D ———
Inpul_werior Ll

T
Inpud_signal ~ |min

-

—

inidax

1

4
Uné_Dlay

aulpud_signal_rmin

Lieil_Disary

+ oulput_wector_max
el ¢
1
Lin_Chelary
Change event of a signal or a vector:)
nifeA_higmial = .
| - oastpast_signal_change
Usd Delay Relifional
Cipririar I
inpa_eec o " -
R _eeghie_gFdings
Und_Delay Relafional
Ciperatar
Lo *

Y N s

Dutped_vecier_chasge
Logical

Relanonal DpEralo

D alod

6-106

Rationale

Readability

Verification and Validation

Code Generation

Last Changed

V2.2

db_0117: Simulink patterns for vector signals

Model Advisor Check

Not applicable

Introduced in R2010a

6-107

6 Simulink

jc_0351: Methods of initialization

ID: Title

jc_0351: Methods of initialization

Priority

Recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

db_0140: Display of basic block parameters
Description

Simple Initialization

Blocks such as Unit Delay, which have an initial value field, can be used to set simple
initial values.

6-108

jc_0351: Methods of initialization

* To determine if the initial value needs to be displayed, see MAAB Guideline db_0140:
Display of basic block parameters.

&
Ind Outd

; <initial=0
- —
=

Unit Crelay

<initial=0 *

Example

Initialization that Requires Computation

The following rules apply for complex initialization:

* The initialization should be performed in a separate subsystem.
* The initialization subsystem should have a name that indicates that initialization is
performed by the subsystem.

Complex initialization may be done at a local level (Example A), at a global level
(Example B), or a combination of local and global.

Initilize_Func A
* Lierge -
O—f=3

Func_A_Running

1]

|

Example A

6-109

6 Simulink

6-110

(1) (2 (3.
Initiali;e_l EventB Tas Halmq
£ 4 4

Initialize_function TimingB_function Taskdms_function
Priarity =1 Priority=2 Priority =3

Example B

Or

Func_ A

Tuncl)
InZ
Func C

Rationale

* Readability

* Code Generation

Last Changed

V2.2

jc_0351: Methods of initialization

Model Advisor Check

Not applicable

Introduced in R2010a

6-111

6 Simulink

jc_0111: Direction of Subsystem

ID: Title

jc_0111: Direction of Subsystem

Priority

Strongly recommended

Scope

J-MAAB

MATLAB Versions

All

Prerequisites

None

Description

Subsystem must not be reversed.

6-112

jc_0111: Direction of Subsystem

Dutl

I I
—|nz Outl
Subszwstem
i Dyl
Subsysteml
1
= |
Z
Linit Delay
Correct
O ——#fm
Ini Dutl
o Outt
Subsystem
1
- [—Cut i
Z
Linit Dl
! i Subswysteml
Incorrect
ional
Rationale
Readability

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Simulink > Check for direction of
subsystem blocks

6-113

6 Simulink

For check details, see “Check orientation of Subsystem blocks”.

Introduced in R2010a

6-114

Stateflow

+ “Chart Appearance” on page 7-2

+ “Stateflow Data and Operations” on page 7-28
+ “Events” on page 7-57

+ “State Chart Patterns” on page 7-64

+ “Flow Chart Patterns” on page 7-72

+ “State Chart Architecture” on page 7-91

7 Stateflow

Chart Appearance

7-2

db_0123: Stateflow port names

db_0129: Stateflow transition appearance

db_0137: States in state machines

db_0133: Use of patterns for flow charts

db_0132: Transitions in flow charts

jc_0501: Format of entries in a State block

jc_0511: Setting the return value from a graphical function
jc_0531: Placement of the default transition

jc_0521: Use of the return value from graphical functions

db_0123: Stateflow port names

db_0123: Stateflow port names

ID: Title

db_0123: Stateflow port names

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

The name of a Stateflow input or output should be the same as the corresponding signal.

Exception: Reusable Stateflow blocks may have different port names.

Rationale

Readability

7 Stateflow

Code Generation

Last Changed

V1.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Stateflow > Check for mismatches
between Stateflow ports and associated signal names

For check details, see “Check for mismatches between names of Stateflow ports and
associated signals”.

Introduced in R2010a

7-4

db_0129: Stateflow transition appearance

db_0129: Stateflow transition appearance

ID: Title

db_0129: Stateflow transition appearance

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description
Transitions in Stateflow:

Do not cross each other, if possible.
Are not drawn one upon the other.

Do not cross any states, junctions, or text fields.

7-5

7 Stateflow

« Allowed if transition is to an internal state.

Transition labels may be visually associated to the corresponding transition.

[condition1] =0)

[condition?2) state2
i

state]

[condition]
{ {
action, action,
} }

AN A

Correct
ImitStates
[InitComplate |
CuwterState’
InnerState/

Correct: Transition crosses state boundary to connect to substate

7-6

db_0129: Stateflow transition appearance

[condition?

]

[condition2] [State2
-—

—_—
state

Incorrect: Transitions cross each other and transition crosses through state

Rationale

Readability

Last Changed

V2.2

Model Advisor Check

Not applicable

Introduced in R2010a

7-7

7 Stateflow

db_0137: States in state machines

ID: Title

db_0137: States in state machines

Priority

Mandatory

Scope

MAAB

MATLAB Versions

All

Prerequisites

db_0149: Flow chart patterns for condition actions

Description

For all levels in a state machine, including the root level, for states with exclusive
decomposition the following rules apply:

At least two exclusive states must exist.

A state cannot have only one substate.

The initial state of every hierarchical level with exclusive states is clearly defined by a
default transition. In the case of multiple default transitions, there must always be an
unconditional default transition.

7-8

db_0137: States in state machines

Rationale

Readability
Workflow
Code Generation

Verification and Validation

Last Changed

V3.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Stateflow > Check usage of exclusive
and default states in state machines

For check details, see “Check usage of exclusive and default states in state machines”.

Introduced in R2010a

7-9

7 Stateflow

db_0133: Use of patterns for flow charts

ID: Title

db_0133: Use of patterns for flow charts

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

A flow chart is built with the help of flow chart patterns (for example, i f-then-else,
for loop, and so on):

The data flow is oriented from the top to the bottom.

Patterns are connected with empty transitions.

7-10

db_0133: Use of patterns for flow charts

Rationale

Readability

Last Changed

V2.2

Model Advisor Check

Not applicable

Introduced in R2010a

7-11

7 Stateflow

db_0132: Transitions in flow charts

ID: Title

db_0132: Transitions in flow charts

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

The following rules apply to transitions in flow charts:

Conditions are drawn on the horizontal.

Actions are drawn on the vertical.

7-12

db_0132: Transitions in flow charts

* Loop constructs are intentional exceptions to this rule.

* Transitions have a condition, a condition action, or an empty transition.

[condition]

O =0

Transition with Condition

action:

Transition with Condition Action

G =

Empty Transition

Transition actions are not used in flow charts. Transition actions are only valid when
used in transitions between states in a state machine, otherwise they are not activated
because of the inherent dependency on a valid state to state transition to activate them.

faction;

@ =)

Transition Action

7-13

7 Stateflow

At every junction, except for the last junction of a flow diagram, exactly one
unconditional transition begins. Every decision point (junction) must have a default path.

[condition]

{

action;

}

comment

™ comment *f
[condition]

™ comment "f

{

achion;

}
Transitions with Comments

Rationale

- Readability

Last Changed

V2.0

7-14

db_0132: Transitions in flow charts

Model Advisor Check

By Task > Modeling Standards for MAAB > Stateflow > Check transition
orientations in flow charts

For check details, see “Check Transition orientations in flow charts”.

Introduced in R2010a

7-15

7 Stateflow

jc_0501: Format of entries in a State block

ID: Title

jc_0501: Format of entries in a State block

Priority

Recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description
A new line should:

Start after the entry (en), during (du), and exit (eXx) statements.

@,
s o

Start after the completion of an assignment statement

7-16

jc_0501: Format of entries in a State block

v

rState

en:
entry_value=1;
during value=0:
du:
entry value=0;
during value=1;
ex:

exit_value=1;
\.

Correct

¥
State
en.entry_value=1:
during value=0;
du:entry value=0;
during value=1;
kEXZEXit_VE|UE:2:

-\"I

Incorrect

Failed to start a new line after en, du, and ex.

7-17

7 Stateflow

State
en:entry_value=1:during_value=0;duentry value=0;
during value=1.ex:exit_value=2:

Incorrect

@,

Failed to start a new line after the completion of an assignment statement “;”.

Rationale

Readability

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Stateflow > Check for entry format
in state blocks

For check details, see “Check entry formatting in State blocks in Stateflow charts”.

Introduced in R2010a

7-18

jc_0511: Setting the return value from a graphical function

jc_0511: Setting the return value from a graphical
function

ID: Title

jc_0511: Setting the return value from a graphical function

Priority

Mandatory

Scope

J-MAAB

MATLAB Versions

All

Prerequisites

None

Description

The return value from a graphical function must be set in only one place.

7-19

7 Stateflow

7-20

fnction A=F(B,C)
L]

,[8==0] _~ , [c==0]

Correct

Return value A is set in one place.

function A=F(B.C)
L
L [E:: []] ’ [C::[]]
[I [
A=1 A=2 A=3
]] |
Incorrect

Return value A is set in multiple places.

Rationale

* Readability
+ Verification and Validation

* Code Generation

jc_0511: Setting the return value from a graphical function

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Stateflow > Check setting Stateflow
graphical function return value

For check details, see “Check return value assignments of graphical functions in
Stateflow charts”.

Introduced in R2010a

7-21

7 Stateflow

jc_0531: Placement of the default transition

ID: Title

jc_0531: Placement of the default transition

Priority

Recommended

Scope

J-MAAB

MATLAB Versions

All

Prerequisites

None

Description

Default transition is connected at the top of the state.

The destination state of the default transition is put above the other states in the
same hierarchy.

7-22

ic_0531: Placement of the default transition

State -

Sub 5t off
e
trmar=LI;
du:
tirer+=dT;

[l.:l'l-.'r off tir a:] I:l:u'nx_\-r on_t -ﬁ-_-]

SubSt on
an!
tirmer=0;
du:
[timers=dT;

Correct

+ The default transition is connected at the top of the state.

* The destination state of the default transition is put above the other states in the
same hierarchy.

SubSt on
.

trnar=l

du
trmar+=dT.

Incorrect

+ Default transition is connected at the side of the state (State 1).

* The destination state of the default transition is lower than the other states in the
same hierarchy (SubSt_off).

7-23

7 Stateflow

Rationale

Readability

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Stateflow > Check default transition
placement in Stateflow charts

For check details, see “Check default transition placement in Stateflow charts”.

Introduced in R2010a

7-24

jc_0521: Use of the return value from graphical functions

jc_0521: Use of the return value from graphical
functions

ID: Title

jc_0521: Use of the return value from graphical functions

Priority

Recommended

Scope

J-MAAB

MATLAB Versions

All

Prerequisites

None

Description

The return value from a graphical function should not be used directly in a comparison
operation.

7-25

7 Stateflow

| &= temptastd) | The data type of the variable in the
comparisan operation is clear

ICLR
%mp_ = temp testt)

Correct

An intermediate variable is used in the conditional expression after the assignment of
the return value from the function temp_test to the intermediate variable a.

[temp.testO==1]

?amgfrf= temp_test(

Incorrect

Return value of the function temp_test is used in the conditional expression.

Rationale

* Readability
+ Verification and Validation

* Code Generation

Last Changed

V2.0

7-26

jc_0521: Use of the return value from graphical functions

Model Advisor Check

By Task > Modeling Standards for MAAB > Stateflow > Check usage of return
values from a graphical function in Stateflow charts

For check details, see “Check usage of return values from a graphical function in
Stateflow charts”.

Introduced in R2010a

7-27

7 Stateflow

Stateflow Data and Operations

7-28

na_0001: Bitwise Stateflow operators

jc_0451: Use of unary minus on unsigned integers in Stateflow

na_0013: Comparison operation in Stateflow

db_0122: Stateflow and Simulink interface signals and parameters

db_0125: Scope of internal signals and local auxiliary variables

jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow
jc_0491: Reuse of variables within a single Stateflow scope

jc_0541: Use of tunable parameters in Stateflow

db_0127: MATLAB commands in Stateflow

jm_0011: Pointers in Stateflow

na_0001: Bitwise Stateflow operators

na_0001: Bitwise Stateflow operators

ID: Title

na_0001: Bitwise Stateflow operators

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

The bitwise Stateflow operators (&, |, and *) should not be used in Stateflow charts
unless you want bitwise operations:

To enable bitwise operations,

1 Select File > Chart Properties.
2 Select Enable C-bit operations.

7-29

7 Stateflow

Chart: C_Bit_Operations

Name: C Bit Operations
Machine: (machine) na 0001

State Machine Type: [Classic -

Update method: |Inherited = | Sample Time:
Enable C-bit operations

User specified state ftransition execution order

[Export Chart Level Graphical Functions (Make Global)
Use Strong Data Typing with Simulink If0

[Execute (enter) Chart At Initialization

[Initislize Outputs Every Time Chart Wakes Up

[Enable Super Step Semantics

Support variable-size arrays

Debugger breakpoint: || On chart entry |7 Lodk Editor

Description:

Correct

Use && and | | for Boolean operation.

MName DataType
K [(allb) &&] [4] a boolean
) o] b boolean
[i§3] C boolean
Use & and | for bit operation.
[+] d uints
[(dle) &1] ,PC [e uints
] f uintd

7-30

na_0001: Bitwise Stateflow operators

Incorrect

Use & and | for Boolean operation.

Mame
[4] a
[(alb) &c] of Bl
[4] «

Rationale

Readability
Verification and Validation

Code Generation

Last Changed

V2.2

Model Advisor Check

DataType
boolean
boolean

boolean

By Task > Modeling Standards for MAAB > Stateflow > Check for bitwise

operations in Stateflow charts

For check details, see “Check for bitwise operations in Stateflow charts”.

Introduced in R2010a

7-31

7 Stateflow

jc_0451: Use of unary minus on unsigned integers in
Stateflow

ID: Title

jc_0451: Use of unary minus on unsigned integers in Stateflow

Priority

Recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description
Do not perform unary minus on unsigned integers.

"‘_ . I INamE ID-ataTypeI
si16_var1=-si16_varZ; [isivez o
1

Correct

7-32

jc_0451: Use of unary minus on unsigned integers in Stateflow

uil6_varl=-uil16_var2; I[:;.]Iu?;:'; u[::t:;ml

Incorrect

Rationale

Verification and Validation

Code Generation

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Stateflow > Check for unary minus
operations on unsigned integers in Stateflow charts

For check details, see “Check for unary minus operations on unsigned integers in
Stateflow charts”.

Introduced in R2010a

7-33

7 Stateflow

na_0013: Comparison operation in Stateflow

ID: Title

na_0013: Comparison operation in Stateflow

Priority

Recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

Comparisons should be made only between variables of the same data type.

If comparisons are made between variables of different data types, the variables need
to be explicitly type cast to matching data types.

7-34

na_0013: Comparison operation in Stateflow

yLi<n]

r—{:ﬁ_

| Name | Data Type |
[4] uintd
4] n uintd

Correct

({3344

Same data type in “i” and “n”
. Li<d] _,
———={

INarn:e IDatﬂ Typel

[4] uintd
] d int16
Incorrect

Different data type in “i” and “d”

~. [Int16(i)=d] -
o =)

| Mame | Data THJ'E[
Linta
int16

4]
[1]d

]

Correct

Do not make comparisons between unsigned integers and negative numbers.

} [i<-1] =

I MHame I Data Twpe I
[141] i uintd

Incorrect

7-35

7 Stateflow

Rationale

Verification and Validation
Code Generation

Simulation

Last Changed

V2.1

Model Advisor Check

By Task > Modeling Standards for MAAB > Stateflow > Check for comparison
operations in Stateflow charts

For check details, see “Check for comparison operations in Stateflow charts”.

Introduced in R2010a

7-36

db_0122: Stateflow and Simulink interface signals and parameters

db_0122: Stateflow and Simulink interface signals
and parameters

ID: Title

db_0122: Stateflow and Simulink interface signals and parameters

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

A Chart uses strong data typing with Simulink and requires that you select the Use
Strong Data Typing with Simulink I/0 parameter.

7-37

7 Stateflow

Chart: Strong_Data_Type

Mame: Strong Data Type
Machine: (machine) db 0127

State Machine Type: |Classic -

Update method: |Inherited | Sample Time:

/| Enable C-bit operations

/| User spedified state ftransition execution order

Export Chart Level Graphical Functions (Make Global)

| /| Use Strong Data Typing with Simulink If0 |

Execute (enter) Chart At Initialization
Initialize Outputs Every Time Chart Wakes Up
Enable Super Step Semantics
/| Support variable-size arrays
Debugger breakpaint: On chart entry Lock Editor

Description:

Rationale

* Verification and Validation
+ Code Generation

+ Simulation

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Stateflow > Check interface signals
and parameters

For check details, see “Check for Strong Data Typing with Simulink I/O”.

Introduced in R2010a

7-38

db_0125: Scope of internal signals and local auxiliary variables

db_0125: Scope of internal signals and local
auxiliary variables

ID: Title

db_0125: Scope of internal signals and local auxiliary variables

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description
Internal signals and local auxiliary variables are "Local data" in Stateflow:

All local data of a Stateflow block must be defined on the chart level or below the
Object Hierarchy.

No local variables may exist on the machine level (that is, no interaction should occur
between local data in different charts).

7-39

7 Stateflow

+ Parameters and constants are allowed at the machine level.

i | Edploiing... madel/chart. tkabe M= E3
Fie Edt Took Add Hep
Object Higrarchy ' [Contents of. (si2le) modelichar state
2+ model Hame Scope Trigger Twpe Sike Bin Max InifVal FrAS ToWS Watch
- chat [-] data Local double]
)
L] Ii‘
events() data(l) tangetsly 1 [1:1])
Correct
i Exploiing. . madel | [O] =}
Fin Edt Took Add Heb
Object Hieranchy Conterds of. (radhing) madal
nl el Name Scope Trigger Type Size Bhin Max Indval FOWS ToWS Watch
- @ chan [] data Local double 0
) state @ zfun
R I

*levents{l) daka(i) fargets() 2 [0

Incorrect

Rationale

- Readability

* Code Generation

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Stateflow > Check Stateflow data
objects with local scope

7-40

db_0125: Scope of internal signals and local auxiliary variables

For check details, see “Check Stateflow data objects with local scope”.

Introduced in R2010a

7-41

7 Stateflow

jc_0481: Use of hard equality comparisons for
floating point numbers in Stateflow

ID: Title

jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow

Priority

Recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description
Do not use hard equality comparisons (Varl == Var2) with two floating-point
numbers.

If a hard comparison is required, a margin of error should be defined and used in the
comparison (LIMIT, in the example).

Hard equality comparisons may be done between two integer data types.

7-42

jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow

{diff={dt - d2 %]

T |[(-LIMT (= diff) 8& (diff €= LMIT)]
) £

o

Correct

diff=ddl -d2 ¥l

T [[C-LMIT (= diff) 82 (diff = UMITD]|
{ >

'\\Tf 1
1 |l =a]

f ot i
| —t
o, 1

o

Incorrect

Rationale

+ Verification and Validation

7-43

7 Stateflow

Code Generation

Last Changed

V2.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Stateflow > Check for equality
operations between floating-point expressions in Stateflow charts

For check details, see “Check for equality operations between floating-point expressions
in Stateflow charts”.

Introduced in R2010a

7-44

jc_0491: Reuse of variables within a single Stateflow scope

jc_0491: Reuse of variables within a single Stateflow
scope

ID: Title

jc_0491: Reuse of variables within a single Stateflow scope

Priority

Recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

The same variable should not have multiple meanings (usages) within a single Stateflow
state.

7-45

7 Stateflow

*
/

[

r\t.-f
\\
~-b+-:~
I

AL

|_;

Correct

Variable of loop counter must not be used other than loop counter.

?
!
{ "x
i=1 s J
'} [i€ 1-'-:}#]’___,..-5?1*
(E?’fﬁffg
\'T:RT“""H-._H
4+ (J
[|
iza+hb;
}
'.'!'."
O
Incorrect

7-46

jc_0491: Reuse of variables within a single Stateflow scope

The meaning of the variable i changes from the index of the loop counter to the sum of a
+b.

'fl opState/ ‘\'.
SubState_ A/
o

tempWar = engSpd.
engSpd = FiltFuncitempVar);

JTRNJS_CALC T ENG_CALC
i :

SubState_B/

en:

tempVar = tranSpd,

tranSpd = FilFune(temp\ar);

" ___,-"
| Conterts of:i_0431/ChaneEpStole S SISl A

Name [Scope [Pat | Data Type Mode [Data Ty
4] remgie Local Budhin nl32

Gt 0681 OGO

l= | Mame | Scope | Port | Data Type Mode | Data 1
] temgvar Local Buitin 3z

Y

Correct

tempVar is defined as local scope in both SubState_ A and SubState B.

Rationale

* Readability
+ Verification

+ Code Generation

7-47

7 Stateflow

7-48

Last Changed

V2.2

Model Advisor Check

Not applicable

Introduced in R2010a

jc_0541: Use of tunable parameters in Stateflow

jc_0541: Use of tunable parameters in Stateflow

ID: Title

jc_0541: Use of tunable parameters in Stateflow

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description
Create tunable parameters in Stateflow charts in one of the following ways:

Define the parameters in the Stateflow chart and corresponding parameters in the
base workspace.

Include the tunable parameters an input into the Stateflow chart. The parameters
must be defined in the base workspace.

7-49

7 Stateflow

4 Simulink Root]
E‘ Column View: |Data Objects | Show Details 2 object(s
ﬁ Base Waorkspace

el EJC_0541 MName Value DataType |
& Model Workspace .

% Configuration [Active)

:i| inputBasedParam [intd

[E;EE] chartBasedParam 12 intd
th Code forjc 0541
% Advice for jc 0541
¥y je 0541
k f. o e
Base Workspace Definitions
4 Simulink Root TR
El Column View: |Stateflow w | Show Details 2ok
5 Base workspace e
Fl JJC_C|541 MName Scope’ Port Re

ﬁ Model Workspace
% Configuration [Active]
§h Code forjc 0541

% Advice for jc 0541
Ry je o541

[#] inputBasedParam Input 1

[l{sl] chartBasedParam Parameter

Stateflow Chart Definitions

Stateflow Chart

Rationale

+ Verification

* Code Generation

Last Changed

V2.2

Model Advisor Check

Not applicable

7-50

jc_0541: Use of tunable parameters in Stateflow

Introduced in R2010a

7-51

7 Stateflow

db_0127: MATLAB commands in Stateflow

ID: Title

db_0127: MATLAB commands in Stateflow

Priority

Mandatory

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description
In Stateflow charts, do not use the .ml syntax.
Individual companies should decide on the use of MATLAB functions. If they are

permitted, then MATLAB functions should only be accessed through the MATLAB
function block.

7-52

db_0127: MATLAB commands in Stateflow

XY¥Trac/
du

[xForce,yForce] = calcWheel(WhellTgTot, wheelAng),

eM
[«F yF] = calcWhell(Wheel[Tq,wheelAng)
Correct
X¥Trac/
du:

xForce = WheelTgTot * ml.cos{wheelAng);
yForce = WheelTgTot * ml.sin(wheelAng);

Incorrect

Rationale

+ Verification and Validation

+ Cod

+ Sim

e Generation

ulation

Note: Code generation supports a limited subset of the MATLAB functions. For a
complete list of the supported function, see the MathWorks documentation.

Last Changed

V2.2

7-53

7 Stateflow

Model Advisor Check

By Task > Modeling Standards for MAAB > Stateflow > Check for MATLAB
expressions in Stateflow charts

For check details, see “Check for MATLAB expressions in Stateflow charts”.

Introduced in R2010a

7-54

im_0011: Pointers in Stateflow

jm_0011: Pointers in Stateflow

ID: Title

jm_0011: Pointers in Stateflow

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

In a Stateflow diagram, pointers to custom code variables are not allowed.

Rationale

Readability

7-55

7 Stateflow

Verification and Validation

Code Generation

Last Changed

V1.0

Model Advisor Check

By Task > Modeling Standards for MAAB > Stateflow > Check for pointers in
Stateflow charts

For check details, see “Check for pointers in Stateflow charts”.

Introduced in R2010a

7-56

Events

Events

db_0126: Scope of events
jm_0012: Event broadcasts

7-57

7 Stateflow

db_0126: Scope of events

ID: Title

db_0126: Scope of events

Priority

Mandatory

Scope

MAAB

MATLAB Versions

Pre R2009b

Prerequisites

None

Description
The following rules apply to events in Stateflow:

All events of a Chart must be defined on the chart level or lower.
There is no event on the machine level (i.e. there is no interaction with local events
between different charts).

Specifics

7-58

db_0126: Scope of events

Rationale

Readability

Verification and Validation
Workflow

Code Generation

Verification and Validation

Last Changed

V2.2

Model Advisor Check

Not applicable

Introduced in R2010a

7-59

7 Stateflow

jm_0012: Event broadcasts

ID: Title

jm_0012: Event broadcasts

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

db_0126: Scope of events

Description
The following rules apply to event broadcasts in Stateflow:

Directed event broadcasts are the only type of event broadcasts allowed.

The send syntax or qualified event names are used to direct the event to a particular
state.

Multiple send statements should be used to direct an event to more than one state.

7-60

jm_0012: Event broadcasts

UL DICE DL CICE UL P (LT UL UL CICU DI DI I DI OO DI
e u
v A %
'
'

] o 7'

L

B1 E1 B2

Correct: Example Using Qualified Event Names

7-61

7 Stateflow

[Input = 10]/Event P_A_2

Incorrect: Use of a non-directed event

Rationale

Readability

Workflow

Verification and Validation
Code Generation

Simulation

Last Changed

V2.2

Model Advisor Check

By Task > Modeling Standards for MAAB > Stateflow > Check for event
broadcasts in Stateflow charts

7-62

jm_0012: Event broadcasts

For check details, see “Check for event broadcasts in Stateflow charts”.

Introduced in R2010a

7-63

7 Stateflow

State Chart Patterns

db_0150: State machine patterns for conditions

db_0151: State machine patterns for transition actions

7-64

db_0150: State machine patterns for conditions

db_0150: State machine patterns for conditions

ID: Title

db_0150: State machine patterns for conditions

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

The following patterns are used for conditions within Stateflow state machines:

Equivalent Functionality

State Machine Pattern

One condition:

(condition)

r| [condition]
__J

£

7-65

7 Stateflow

7-66

db_0150: State machine patterns for conditions

Equivalent Functionality

State Machine Pattern

Up to three conditions, short
form:

(The use of different logical

operators in this form is not
allowed. Use subconditions

instead.)

(conditionl &&
condition2)
(conditionl ||
condition2)

—

[condition1 && condition2] B

[

[condiiont || condiion2] B

Two or more conditions,
multiline form:

A subcondition is a set of logical
operations, all of the same type,
enclosed in parentheses.

(The use of different operators
in this form is not allowed. Use
subconditions instead.)

(conditionl ...
&& condition2 ...
&& condition3)
(conditionl ...
|l condition2 ...
|l condition3)

[condition1
& condition2
L& condition3]

£

[conditiont
|| condition2 ..
|| condition3]

L]

Rationale

- Readability

Last Changed

V2.2

7-67

7 Stateflow

Model Advisor Check

Not applicable

Introduced in R2010a

7-68

db_0151: State machine patterns for transition actions

db_0151: State machine patterns for transition
actions

ID: Title

db_0151: State machine patterns for transition actions
Priority
Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

The following patterns are used for transition actions within Stateflow state machines:

Equivalent Functionality State Machine Pattern

One transition action:

&, faction:
action;

7-69

7 Stateflow

Equivalent Functionality

State Machine Pattern

Two or more transition actions,
multiline form:

(Two or more transition actions
in one line are not allowed.)

actionl;
action?2;
action3;

faction?:
actionz;
action3;

[]

7-70

db_0151: State machine patterns for transition actions

Rationale

Readability

Workflow

Verification and Validation
Code Generation

Simulation

Last Changed

V2.2

Model Advisor Check

By Task > Modeling Standards for MAAB > Stateflow > Check transition actions
in Stateflow charts

For check details, see “Check transition actions in Stateflow charts”.

Introduced in R2010a

7-71

7 Stateflow

Flow Chart Patterns

* db_0148: Flow chart patterns for conditions

+ db_0149: Flow chart patterns for condition actions
* db_0134: Flow chart patterns for If constructs

+ db_0159: Flow chart patterns for case constructs

+ db_0135: Flow chart patterns for loop constructs

The preceding guidelines illustrate sample patterns used in flow charts. As such, they
would normally be part of a much larger Stateflow diagram.

7-72

db_0148: Flow chart patterns for conditions

db_0148: Flow chart patterns for conditions

ID: Title

db_0148: Flow chart patterns for conditions

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

Use the following patterns for conditions within Stateflow flow charts:

7-73

7 Stateflow

Equivalent Functionality

Flow Chart Pattern

One condition:

[condition]

[condition]

* comment */
[condition]

O

Up to three conditions, short form:

(The use of different logical
operators in this form is not
allowed. Use subconditions

instead.)

[conditionl
&& condition2
&& condition3]
[conditionl
|l condition2
|l condition3]

[condition? && condition2 && condition3]

O =)

[condition? || condition2 || condition3]

O

=)

&& condition3]
[conditionl ...
|l condition2 ...
|l condition3]

Equivalent Functionality Flow Chart Pattern

Two or more conditions, multiline .

form: [condiitionT ...

&& condition2 .

(The use of different logical && condition3]

operators in this form is not

allowed. Use subconditions o

instead.) [condition? ..

- || condition2 .
conditionl ... e

&& condition2 ... ” COndltang]

7-74

db_0148: Flow chart patterns for conditions

Equivalent Functionality

Flow Chart Pattern

Conditions with subconditions:

(The use of different logical
operators to connect subconditions
is not allowed. The use of brackets
is mandatory.)

[(conditionla

|l conditionlb) ...
&& (condition2a

|l condition2b) ...
&& (condition3)]
[(conditionla

&& conditionlb) ...
|l (condition2a

&& condition2b) ...
Il (condition3)]

[(conditionta || condition1b) ..
&& (conditionZa || conditionZb) ..
&:& condition3]

=

[lconditionta && condition1h) ...
|| {conditionZa && condition2b) ..

|| condition3]
=

Equivalent Functionality

Flow Chart Pattern

Conditions that are visually
separated:

(This form may be combined with
the preceding patterns.)

condition1] [condition?2]

x
E

[conditionl
&& condition2]
[conditionl .
Il condition2] [condition 1]
[condition?]
Rationale
Readability

7-75

7 Stateflow

7-76

Last Changed

V2.2

Model Advisor Check

Not applicable

Introduced in R2010a

db_0149: Flow chart patterns for condition actions

db_0149: Flow chart patterns for condition actions

ID: Title

db_0149: Flow chart patterns for condition actions

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

None

Description

You should use the following patterns for condition actions within Stateflow flow charts:

7-77

7 Stateflow

Equivalent Functionality Flow Chart Pattern

One condition action:

action; [* comment */
action, i
]_ action,

h

Two or more condition actions, multiline form:

(Two or more condition actions in one line are
not allowed.)

actionl; ...
action2; ...
action3; ...

i

action?:
action2:
action3:

}

Condition actions, that are visually separated:

(This form may be combined with the
preceding patterns.)

actionla;
actionlb;
action2;
action3;

O

actionl1a;
actionib,

action3,
}

&

7-78

db_0149: Flow chart patterns for condition actions

Rationale

Readability

Last Changed

V2.2

Model Advisor Check

Not applicable

Introduced in R2010a

7-79

7 Stateflow

db_0134: Flow chart patterns for If constructs

ID: Title

db_0134: Flow chart patterns for If constructs

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites
db_0148: Flow chart patterns for conditions

db_0149: Flow chart patterns for condition actions

Description

Use the following patterns for If constructs within Stateflow flow charts:

7-80

db_0134: Flow chart patterns for If constructs

if then

if (condition){ action;

}

[condition]

action;

if then else

if (condition){ actionl;
}

else {

action2;

}

7-81

7 Stateflow

Equivalent Functionality

Flow Chart Pattern

if then else if

if (conditionl){ actionl;
3
else if (condition2) { action2;
3
else if (condition3){
__action3;
3
else {
action4;
3

[ondition] 3"{_-_}

[condmionZ]

B {
[eomdition3] ictinni: action;
1 }

Equivalent Functionality

Flow Chart Pattern

Cascade of if then

if (conditionl){ actionl;
if (condition2){ action2;

}
}
}

if (condition3){ action3;

ff [condiboni]
=]

O
{

actionl,

¥ [candtion]
OO0

{
achon2,

}

L7}

f: [conition3)

Qﬁ—ﬁd}u
(ﬁ}q
'
O

7-82

db_0134: Flow chart patterns for If constructs

Rationale

Readability

Verification and Validation
Workflow

Code Generation

Simulation

Last Changed

V1.0

Model Advisor Check

Not applicable

Introduced in R2010a

7-83

7 Stateflow

db_0159: Flow chart patterns for case constructs

ID: Title

db_0159: Flow chart patterns for case constructs

Priority

Strongly recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

db_0148: Flow chart patterns for conditions

db_0149: Flow chart patterns for condition actions

7-84

db_0159: Flow chart patterns for case constructs

Description

Use the following patterns must be used for case constructs within Stateflow flow charts:

Equivalent Functionality Flow Chart Pattern
case with exclusive selection O
selection = .__; SN
switch (selection) selechon = ..
{
case 1: rﬂ [selection == 1]
actionl; T {
break; fu:tn:-lﬂ_
case 2: ;
action2; (‘E [selection == 2] -0
break; /=0,
case 3:

action?;

action3; })
break; é—l‘fé

default: (71 [selection == 3]
action4; o = ?{
} achons

7-85

7 Stateflow

Equivalent Functionality

Flow Chart Pattern

case with exclusive conditions

o}

cl = conditionl; tl:ccnd:l:ll?n}
c2 = condition2; Eﬁfig::gﬁ:zg
c3 = condition3; T B
if (cl && !c2 && !1c3) |
{ é@ [1881c288 163
actionl; r {
} action?;
elseif (Icl && c2 && 1c3) H '.L} 5
{ [lc1 && c2 && 1c3] 1
i "
action2; () {= {
} actonZ;
elseif (Icl && !c2 && c3) V1 _(J
)
{ 7] . S
action3; :n'. [lc1 && Ic2 &8 c3]
b .
else action?; |
{ }
action4; L
b
LY
Rationale

* Readability

Last Changed

V1.0

Model Advisor Check

Not applicable

7-86

db_0159: Flow chart patterns for case constructs

Introduced in R2010a

7-87

7 Stateflow

db_0135: Flow chart patterns for loop constructs

ID: Title

db_0135: Flow chart patterns for loop constructs

Priority

Recommended

Scope

MAAB

MATLAB Versions

All

Prerequisites

db_0148: Flow chart patterns for conditions

db_0149: Flow chart patterns for condition actions

Description

Use the following patterns to create Loops within Stateflow flow charts:

7-88

db_0135: Flow chart patterns for loop constructs

Equivalent Functionality

Flow Chart Pattern

for loop

for (index=0;
index<number_of_loops;
index++)

{ -
action;

}

-

inge = o

[indlex = number_of_lnops] (__b.':,\.l
-

Aclion,

whi le loop

while (condition)

{

action;

}

[condition]

{

action;

H

do while loop

do
{

action;

while (condition);

[condition]

action,

7-89

7 Stateflow

Rationale

Readability

Last Changed

V1.0

Model Advisor Check

Not applicable

Introduced in R2010a

7-90

State Chart Architecture

State Chart Architecture

na_0038: Levels in Stateflow charts

na_0039: Use of Simulink in Stateflow charts
na_0040: Number of states per container
na_0041: Selection of function type

na_0042: Location of Simulink functions

7-91

7 Stateflow

na_0038: Levels in Stateflow charts

ID: Title

na_0038: Levels in Stateflow charts

Priority

Recommended

Scope

NA-MAAB

MATLAB Versions

All

Description

The number of nested States should be limited, typically 3 per level. If additional levels
are required, use sub-charts.

Incorrect: Level_4_a and Level_4_b are nested more than 3 deep

7-92

na_0038: Levels in Stateflow charts

Level ¢ ™y
Lewel 2/)
Level 2_a/ ™ (Level 2 b/ ™
Lewvel 4 af Level 4 b/
N A L A
. J
. A

Correct: The 4 levels are encapsulated inside a subchart

Level 17 ™y
’T_exrel_zf '
IR ™ Tevel 2 b ™
\ S \, S
0 A
h o

7-93

7 Stateflow

Rationale

Readability

Last Changed

V3.0

Model Advisor Check

Not applicable

Introduced in R2013a

7-94

na_0039: Use of Simulink in Stateflow charts

na_0039: Use of Simulink in Stateflow charts

ID: Title

na_0039: Use of Simulink in Stateflow charts

Priority

Recommended

Scope

NA-MAAB

MATLAB Versions

R2010b and later

Description

Do not nest Stateflow charts inside Simulink functions that are included in Stateflow
charts.

Incorrect

a By na 0039
4 :&I Simulink_Inside_Statef|ow
EEl Chart_Inside_Simulink_Which_Is_Inside_Stateflow

Rationale

Readability

7-95

7 Stateflow

Verification and Validation

Code Generation

Last Changed

V3.0

Model Advisor Check

Not applicable

Introduced in R2013a

7-96

na_0040: Number of states per container

na_0040: Number of states per container

ID: Title

na_0040: Number of states per container

Priority

Recommended

Scope

NA-MAAB

MATLAB Versions

All

Description

The number of viewable States per container should be limited, typically to 6 to 10 states
per container. The number is based on the visible states in the diagram.

Correct

7-97

7 Stateflow

f Seven/ ‘

Note

A container is either a State, Box or root level chart.

Rationale

Readability
Verification and Validation

Code Generation

Last Changed

V3.0

7-98

na_0040: Number of states per container

Model Advisor Check

Not applicable

Introduced in R2013a

7-99

7 Stateflow

na_0041: Selection of function type

ID: Title

na_0041: Selection of function type

Priority

Recommended

Scope

NA-MAAB

MATLAB Versions

All

Description

Stateflow supports three types of functions: Graphical, MATLAB and Simulink. The
appropriate function depends on the type of operations required:

Simulink

Transfer functions

Integrators

Table look-ups
MATLAB

Complex equations

If / then / else logic

7-100

na_0041: Selection of function type

Graphical functions

If / then / else logic

Rationale

Workflow

Code Generation

Last Changed

V3.0

Model Advisor Check

Not applicable

Introduced in R2013a

7-101

7 Stateflow

na_0042: Location of Simulink functions

ID: Title

na_0042: Location of Simulink functions

Priority

Recommended

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

na_0039: Use of Simulink in Stateflow charts

Description

When deciding whether to embed Simulink functions inside a Stateflow chart, the
following conditions make embedding the preferred option. If the Simulink functions

Use only local Chart data.

OR

Use a mixture of local Chart data and inputs from Simulink. OR

7-102

na_0042: Location of Simulink functions

OR

Are called from multiple locations within the chart.

OR

Are not called every time step.

Rationale

Readability
Workflow

Last Changed

V3.0

Model Advisor Check

Not applicable

Introduced in R2013a

7-103

Enumerated Data

8 Enumerated Data

General Guidelines

na_0033: Enumerated Types Usage

na_0031: Definition of default enumerated value

8-2

na_0033: Enumerated Types Usage

na_0033: Enumerated Types Usage

ID: Title

na_0033: Enumerated Types Usage

Priority

Recommended

Scope

NA-MAAB

MATLAB Versions

R2010b and later

Prerequisites

None

Description

An enumerated data type should be used when a signal or parameter can take on a finite
set of integer values, and those values are associated with a set of named items. The
names, called literals, have meaning in the context of the algorithm or the domain in
which it operates. Typically, these literals represent an operating mode, signal status,
build variation, or some other discrete property that the quantity represented by the
variable can take on. A typical automotive example of this is the modes of a transmission:
Park, Reverse Neutral, Drive, Low.

8 Enumerated Data

Rationale

Readability

Verification and Validation
Workflow

Code Generation

Simulation

See Also

NASA Orion style guideline dm_0002: Enumerated type usage

Last Changed

V3.0

Introduced in R2013a

8-4

na_0031: Definition of default enumerated value

na_0031: Definition of default enumerated value

ID: Title

na_0031: Definition of default enumerated value

Priority

Recommended

Scope

NA-MAAB

MATLAB Versions

R2010b and later

Prerequisites

None

Description

The default value of the enumeration should always be explicitly defined for the
enumerated type.

Rationale

Readability

8-5

8 Enumerated Data

8-6

Verification and Validation

Code Generation

Last Changed

V3.0

Introduced in R2013a

MATLAB Functions

+ “MATLAB Function Appearance” on page 9-2

+ “MATLAB Function Data and Operations” on page 9-9
+ “MATLAB Function Patterns” on page 9-15

+ “MATLAB Function Usage” on page 9-19

9 MATLAB Functions

MATLAB Function Appearance

na_0018: Number of nested if/else and case statement
na_0019: Restricted Variable Names
na_0025: MATLAB Function Header

9-2

na_0018: Number of nested if/else and case statement

na_0018: Number of nested if/else and case
statement

ID: Title

na_0018: Number of nested if/else and case statement
Priority
Strongly recommended

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

None

Description

The number of levels of nested if / else and case statements should be limited, typically to
3 levels.

Rationale

Readability

9-3

9 MATLAB Functions

Code Generation

See Also

NASA Orion style guideline jr_0002: Number of nested if/else and case statement
blocks

Last Changed

V3.0

Model Advisor Check

By Task > Modeling Standards for MAAB > MATLAB Functions > Check
MATLAB Function block metrics

For check details, see “Check MATLAB Function metrics”.

Introduced in R2013a

9-4

na_0019: Restricted Variable Names

na_0019: Restricted Variable Names

ID: Title

na_0019: Restricted Variable Names

Priority

Mandatory

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

None

Description
To improve the readability of the MATLAB code, avoid using reserved C variable names.
For example, avoid using const, const, TRUE, FALSE, infinity, nil, double, single,

or enum.

Avoid using variable names that conflict with MATLAB Functions, for example conv.

9-5

9 MATLAB Functions

Note

Reserved keywords are defined in the Simulink Coder™ documentation.

Rationale

Readability

Verification and Validation

See Also

Derived from NASA Orion style guideline jh_0042: Required software

Last Changed

V3.0

Introduced in R2013a

9-6

na_0025: MATLAB Function Header

na_0025: MATLAB Function Header

ID: Title

na_0025: MATLAB Function Header

Priority

Strongly recommended

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

None

Description

MATLAB Functions must have a descriptive header. Header content may include, but is

not limited to, the following types of information:

Function name
Description of function

Assumptions and limitations

9-7

9 MATLAB Functions

* Description of changes from previous versions

+ Lists of inputs and outputs

Example:

%% Function Name: NA 0025 Example Header

%

% Assumptions: None

%

% Inputs:

% List of input arguments
%

% Outputs:

% List of output arguments

%

% $Date: August 27, 2012
%

Rationale

* Readability
+ Verification and Validation
+ Workflow

+ Code Generation

See Also

* NASA Orion style guideline jh_0073: eML Header

Last Changed

V3.0

Introduced in R2013a

MATLAB Function Data and Operations

MATLAB Function Data and Operations

na_0034: MATLAB Function block input/output settings
na_0024: Global Variables

9-9

9 MATLAB Functions

na_0034: MATLAB Function block input/output
settings

ID: Title

na_0034:MATLAB Function block input/output settings

Priority

Strongly recommended

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

None

Description

All inputs and outputs to MATLAB function blocks should have the data type explicitly
defined, either in the Model Explorer or at the start of the function. This provides a more
rigorous data type check for MATLAB Function blocks and prevents the need for using
assert statements.

9-10

na_0034: MATLAB Function block input/output settings

Rationale

Readability
Verification and Validation
Workflow

Code Generation

Last Changed

V3.0

Model Advisor Check

By Task > Modeling Standards for MAAB > MATLAB Functions > Check for
fully defined interface at MATLAB Function block boundary

For check details, see “Check input and output settings of MATLAB Functions”.

Introduced in R2013a

9-11

9 MATLAB Functions

na_0024: Global Variables

ID: Title

na_0024: Global Variables

Priority

Strongly recommended

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

None

Description

The preferred method for accessing common data is by signal lines. However, if required,
Data Store Memory can be used to emulate global memory.

Example:

In this example, the same Data Store Memory (ErrorFlag_DataStore) is written to
two separate MATLAB Functions.

9-12

na_0024: Global Variables

function EngineFaultEvaluation(EngineData)
%# codegen
global ErrorFlag_DataStore
if (EngineData.RPM_HIGH)
ErrorFlag_DataStore = bitor(ErrorFlag_DataStore, HIGHRPMFAULT);
end

if (EngineData.RPM_LOW)

ErrorFlag_DataStore = bitor(ErrorFlag_DataStore, LOWRPMFAULT);
end
end

function WheelFaultEvaluation(WheelData)
%# codegen
global ErrorFlag_DataStore
if (WheelData.SlipHigh)
ErrorFlag_DataStore = bitor(ErrorFlag_DataStore, WHEELSLIP);
end

if (WheelData.SlipHigh)

ErrorFlag_DataStore = bitor(ErrorFlag_DataStore, LOWRPMFAULT);
end
end

Rationale

* Readability
* Verification and Validation
+ Code Generation

+ Simulation

See Also

* NASA Orion style guideline ek_0003: Global Variables

Last Changed

V3.0

9-13

9 MATLAB Functions

Model Advisor Check

By Task > Modeling Standards for MAAB > MATLAB Functions > Check
MATLAB code for global variables

For check details, see “Check MATLAB code for global variables”.

Introduced in R2013a

9-14

MATLAB Function Patterns

MATLAB Function Patterns

na_0022: Recommended patterns for Switch/Case statements

9-15

9 MATLAB Functions

na_0022: Recommended patterns for Switch/Case
statements

ID: Title

na_0022: Recommended patterns for Switch/Case statements

Priority

Mandatory

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

None

Description

Switch / Case statements must use constant values for the Case arguments. Input
variables cannot be used in the Case arguments.

Correct:

function outVar = NA_0022_Pass(SwitchVar)
%# codegen
switch SwitchvVar

9-16

na_0022: Recommended patterns for Switch/Case statements

case Case_1 Parameter % Parameter
outvar = 0;
case NA_0022.Case % Enumerated Data type
outvar = 1;
case 3 % Hard Code Value
outvar = 2;
otherwise
outvar = 10;
end
end
Incorrect:

function outVar = NA_0022_Fail(Case_1, Case 2, Case_3, SwitchVvar)
%# codegen
switch Switchvar
case Case_1
outvar = 1;
case Case 2
outvVar = 2;
case Case_3
outvVar = 3;
otherwise
outvVar = 10;
end
end

Rationale

+ Verification and Validation
* Code Generation

+ Simulation

See Also

* NASA Orion style guideline jh_0026: Switch / Case statement

Last Changed

V3.0

9-17

9 MATLAB Functions

Introduced in R2013a

9-18

MATLAB Function Usage

MATLAB Function Usage

na_0016: Source lines of MATLAB Functions
na_0017: Number of called function levels
na_0021: Strings

9-19

9 MATLAB Functions

na_0016: Source lines of MATLAB Functions

ID: Title

na_0016: Source lines of MATLAB Functions

Priority

Mandatory

Scope

NA-MAAB

MATLAB Versions

See description

Prerequisites

None

Description

The length of MATLAB functions should be limited, with a recommended limit of 60 lines
of code. This restriction applies to MATLAB Functions that reside in the Simulink block
diagram and external MATLAB files with a .m extension.

If sub-functions are used, they may use additional lines of code. Also limit the length of
sub-functions to 60 lines of code.

9-20

na_0016: Source lines of MATLAB Functions

Rationale

Readability
Verification and Validation
Workflow

Code Generation

See Also

NASA Orion style guideline IM_0008: Source lines of eML

Last Changed

V3.0

Model Advisor Check

By Task > Modeling Standards for MAAB > MATLAB Functions > Check
MATLAB Function block metrics

For check details, see “Check MATLAB Function metrics”.

Introduced in R2013a

9-21

9 MATLAB Functions

na_0017: Number of called function levels

ID: Title

na_0017: Number of called function levels

Priority

Mandatory

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

None

Description

The number of levels of sub-functions should be limited, typically to 3 levels. MATLAB
Function blocks that reside at the Simulink block diagram level count as the first level,
unless it is simply a wrapper for an external MATLAB file with a .m extension.

This includes functions that are defined within the MATLAB block and those in the
separate .m files.

9-22

na_0017: Number of called function levels

Note

Standard utility functions, such as built-in functions like sqrt or log, are not include in
the number of levels. Likewise, commonly used custom utility functions can be excluded
from the number of levels.

Rationale

Readability
Verification and Validation

Last Changed

V3.0

Introduced in R2013a

9-23

9 MATLAB Functions

9-24

na_0021: Strings

ID: Title

na_0021: Strings

Priority

Strongly recommended

Scope

NA-MAAB

MATLAB Versions

All

Prerequisites

None

Description

The use of strings is not recommended. MATLAB Functions store strings as character
arrays. The arrays cannot be re-sized to accommodate a string value of different length,
due to lack of dynamic memory allocation. Strings are not a supported data type in
Simulink, so MATLAB Function blocks cannot pass the string data outside the block.

For example, the following code will produce an error:

name="rate_error”; %this creates a 1 x 10 character array

na_0021: Strings

name =
size i1s now 1 x 12, not 1 x 10.

Note

x_rate_error”; %this causes an error because the array

If the string is being used for switch / case behavior, consider using enumerated data

types

Rationale

* Verification and Validation
+ Workflow

* Code Generation

See Also

* NASA Orion style guideline jh_0024: Strings

Last Changed

V3.0

Introduced in R2013a

9-25

A

Recommendations for Automation Tools

These recommendations are for companies who develop tools that automate checking
of the style guidelines. The MathWorks Automotive Advisory Board (MAAB) developed
these recommendations for tool vendors who create tools developed with MathWorks
tools that check models against these guidelines. To provide maximum information to
potential users of the tools, the MAAB strongly recommends that tool vendors provide
a compliance matrix that is easily accessible while the tool is running. This information
should be available without a need to purchase the tool.

The compliance matrix should include the following information:

+ Version of the guidelines that are checked — shall include the complete title, as found
on the title page of this document.
Include the MAAB Style Guidelines Title and Version document number.

+ Table consisting of the following information for each guideline:

* Guideline ID
Guideline title
Level of compliance
Detail

The guideline ID and title shall be exactly as included in this document. The level of
compliance shall be one of the following:

Correction The tool checks and automatically or semiautomatically corrects the
noncompliance.
Check The tool checks and flags noncompliance. It is the developer’s

responsibility to make the correction.

Partial The tool checks part of the guideline. The detail section should clearly
identify what is and what is not checked.

A Recommendations for Automation Tools

None

The tool does not check the guideline. The MAAB recommends that the
vendor provide a recommendation of how to manually check guidelines
that the tool does not check.

Guideline Writing

Guidelines with the following characteristics are easier to understand and use. At a
minimum, when writing a new guideline, it should be

Understandable and
unambiguous

A guideline's description should be precise, clearly
worded, concise, and should define a characteristic of

a model (or part of a model) that a checking tool can
evaluate. Use the words "must," "shall," "should," and
"may" carefully; they have distinct meanings that are
important for model developers and model checkers
(human and automated). It is helpful to the reader if the
guideline author describes how the conforming state can
be reached (for example, by selecting particular options
or clicking a certain button). Examples, counterexamples,
pictures, diagrams, and screen shots are also helpful and
are encouraged.

Minimize the allowable exceptions to a guideline;
exceptions blur a guideline and make it harder to apply.
If a guideline has many allowable exceptions, you may
be trying to cover too many characteristics with one
guideline. (See Minimal, following, for some solutions.)

Easy to find

Minimal

A guideline should address only one model characteristic
at a time. Guidelines should be atomic. For example,
instead of writing a big guideline that addresses error
prevention and readability at the same time, make two
guidelines, one that addresses error prevention and one
that addresses readability. If appropriate, make one
guideline a prerequisite of the other. Also, big guidelines
are more likely than small guidelines to require
compromises for wide acceptance. Big guidelines may
end up being weaker, less specific, and less beneficial.

B Guideline Writing

Small, focused guidelines are less likely to change due to
compromise and easier adoption.

Flow Chart Reference

Use the patterns that appear in this appendix for if-then-else-if constructs within
Stateflow flow charts.

C Flow Chart Reference

Straight Line Flow Chart Pattern

Curved Line Flow Chart Pattern

if then

Q

&

é& [condition]
"y
{ [condition]
action, {
} action;
O |
if then else
O @
é& [condition]
- [condition]
{ _ {
action2; action?; action;
ég; t t

C-2

Flow Chart Reference

if then else if

[condition1]

acton,

}

[conditon2)

achonz,

[condition]

{

action1;

}

[condition2]
{

action2;

}

{
actond,
1

[condition3]
{

action3,

¥

C-3

C Flow Chart Reference

The following patterns are used for case constructs within Stateflow flow charts:

case with exclusive selection

selecion=
}

[selection == 1]

[sedection == 2]

[sedection == 3]

{ { {
actiond, | action?, | actioni:
} } }

&

[salection == 1]
{

actiond;

I

case with exclusive conditions

C-+4

Flow Chart Reference

{

¢1 = condition{;
¢2 = condition2,
;3 = conditiond;

[e1 84 162 & Ic3]
=@
Mot &8 2 &4 1c8]
[le1 88 o2 &8 3]
o
action?; | action2, iﬂﬂﬁm.
} }

C-5

C Flow Chart Reference

The following patterns are used for for loops within Stateflow flow charts:

Straight Line Flow Chart Pattern

‘Curved Line Flow Chart Pattern

for loop

D [index < number_of_loops] 4
{
inden = 0;
}

"

|{nd9x++..\\-~.\
5 ™4

by {
o~ action,
é\ }

mdex 0

[index < number_of_loops]

{

action;
index++:

}

Straight Line Flow Chart Pattern

Curved Line Flow Chart Pattern

while loop

O

[condition]

mondmon
acnon

C-6

Flow Chart Reference

do while loop

[condition]

{

action,

}

{

action;

C-7

C Flow Chart Reference

The following patterns are alternately used for If-then-else-if constructs within Stateflow
flow charts:

if then else if

Cascade of if then

C-8

Flow Chart Reference

C-9

Background Information on Basic Blocks
and Signals

D Basic Blocks

Basic Blocks

This document uses the term basic blocks to refer to blocks built into the “Block
Libraries”. The following table lists some examples of basic blocks.

Basic Blocks

Block Example

Inport (>

Constant 1 p

Gain)Dﬁ
Sum)@
Switch E_
Saturation

Abs A ul P

Signals and Signal Labels

Signals and Signal Labels

Signals may be scalars, vectors, or busses. They may carry data or control flows.

You use signal labels to make model functionality more understandable from the
Simulink diagram. You can also use them to control the variable names used in
simulation and code generation. Enter signal names only once (at the point of signal
origination). Often, you may want to also display the signal name elsewhere in the
model. In these cases, the signal name should be inherited until the signal is functionally
transformed. (Passing a signal through an integrator is functionally transforming.
Passing a signal through an Inport into a nested subsystem is not.) Once a named signal
1s functionally transformed, associate a new name with it.

Unless explicitly stated otherwise, the guidelines in “Signals” on page 6-42 apply to all
types of signals.

For more information about the representation of signals in Simulink models, see “Signal
Basics” in the Simulink documentation.

Glossary

Actions Actions are part of Stateflow diagram execution. The
action can be executed as part of a transition from one
state to another, or depending on the activity status
of a state. Transitions can have condition actions and
transition actions. For example,

Condition Transition
action action

Power_on switch_off [¢1] { elec_off}/ light_off;

[Power_off

States can have entry, during, exit, and, on
event name actions. For example,

Fower_ond
enirvaction();

during: action2{;

et action 39);

on switch_offactiond(;

If you enter the name and backslash followed directly

by an action or actions (without the entry keyword), the
actions are interpreted as entry actions. This shorthand is
useful if you are specifying only entry actions.

The action language defines the categories of actions you
can specify and their associated notations. An action can
Glossary-1

Glossary

Action Language

Chart Instance

Condition

Connective Junction

Glossary-2

be a function call, an event to be broadcast, a variable to
be assigned a value, and so on.

Sometimes you want actions to take place as part of
Stateflow diagram execution. The action can be executed
as part of a transition from one state to another, or it
can depend on the activity status of a state. Transitions
can have condition actions and transition actions. States
can have entry, during, exit, and, on event_name
actions. An action can be a function call, an event to be
broadcast, a variable to be assigned a value, etc.

The action language defines the categories of actions you
can specify and their associated notations. Violations

of the action language notation are flagged as errors by
the parser. This section describes the action language
notation rules.

A chart instance is a link from a Stateflow model to a
chart stored in a Simulink library. A chart in a library
can have many chart instances. Updating the chart in the
library automatically updates all the instances of that
chart.

A condition is a Boolean expression to specify that a
transition occur, given that the specified expression is
true. For example,

cluteh_engaged

e
[engaged

peed » thrashold] [speed>threshold]is a

@ Ll) condition
=

The action language defines the notation to define
conditions associated with transitions.

Connective junctions are decision points in the system. A
connective junction is a graphical object that simplifies

Glossary

Stateflow diagram representations and facilitates
generation of efficient code. Connective junctions provide
alternative ways to represent the system behavior you
want. This example shows how connective junctions
(displayed as small circles) are used to represent the flow
of an if code structure.

*) e1lfat) i [31311{
U if [e2]4
N a2
Felse if [c3]{
4 a3
3 }
[[02]{32] }
_I
'«_ f
\ /1c3](a3)
-\.___{- _:. I’ e

Or the equivalent squared style

[e1] T el]
0 at
{a1} it [e2]4
2 e) az2
O——=0 belse if [e3]{
{82} ad
e ' }
&
{a3)
o

Glossary-3

Glossary

Data

Defining Data

Data Dictionary

Decomposition

Glossary-4

Name Button Icon |Description
Connective|[«a- One use of a Connective junction
junction ||£a 1s to handle situations where

transitions out of one state into
two or more states are taken
based on the same event but
guarded by different conditions.

Data objects store numerical values for reference in the
Stateflow diagram.

A state machine can store and retrieve data that resides
internally in its own workspace. It can also access

data that resides externally in the Simulink model or
application that embeds the state machine. When creating
a Stateflow model, you must define any internal or
external data referenced by the state machine's actions.

The data dictionary is a database where Stateflow
diagram information is stored. When you create Stateflow
diagram objects, the information about those objects is
stored in the data dictionary, once you save the Stateflow
diagram.

A state has decomposition when it consists of one or more
substates. A Stateflow diagram that contains at least one
state also has decomposition. Representing hierarchy
necessitates some rules around how states can be grouped
in the hierarchy. A superstate has either parallel (AND)
or exclusive (OR) decomposition. All substates at a
particular level in the hierarchy must be of the same
decomposition.

Parallel (AND) State Decomposition. Parallel (AND)
state decomposition is indicated when states have dashed
borders. This representation is appropriate if all states

at that same level in the hierarchy are active at the same
time. The activity within parallel states is essentially
independent.

Glossary

Default Transition

Events

Finite State Machine

Exclusive (OR) State Decomposition. Exclusive (OR)
state decomposition is represented by states with solid
borders. Exclusive (OR) decomposition is used to describe
system modes that are mutually exclusive. Only one state,
at the same level in the hierarchy, can be active at a time.

Default transitions are primarily used to specify which
exclusive (OR) state is to be entered when there is
ambiguity among two or more neighboring exclusive

(OR) states. For example, default transitions specify
which substate of a superstate with exclusive (OR)
decomposition the system enters by default in the absence
of any other information. Default transitions are also used
to specify that a junction should be entered by default. A
default transition is represented by selecting the default
transition object from the toolbar and then dropping it

to attach to a destination object. The default transition
object is a transition with a destination but no source
object.

Name Button Icon |Description
Default % Use a Default transition to
transition indicate, when entering this level

in the hierarchy, which state
becomes active by default.

Events drive the Stateflow diagram execution. Define all
events that affect the Stateflow diagram. The occurrence
of an event causes the status of the states in the Stateflow
diagram to be evaluated. The broadcast of an event

can trigger a transition to occur and/or can trigger an
action to be executed. Events are broadcast in a top-down
manner starting from the event's parent in the hierarchy.

A finite state machine (FSM) is a representation of an
event-driven system. FSMs are also used to describe
reactive systems. In an event-driven or reactive system,
the system transitions from one mode or state, to another

Glossary-5

Glossary

Flow Graph

Flow Chart (also known as
Flow Path)

Flow Subgraph

Hierarchy

History Junction

Inner Transitions

Glossary-6

prescribed mode or state, provided that the condition
defining the change is true.

A flow graph is the set of flow charts that start from a
transition segment that, in turn, starts from a state or a
default transition segment.

A flow chart is an ordered sequence of transition
segments and junctions where each succeeding segment
starts on the junction that terminated the previous
segment.

A flow subgraph is the set of flow charts that start on the
same transition segment.

Using hierarchy you can organize complex systems
by placing states within other higher-level states.
A hierarchical design usually reduces the number
of transitions and produces neat, more manageable
diagrams.

A History Junction specifies the destination substate of a
transition based on historical information. If a superstate
has a History Junction, the transition to the destination
substate is defined to be the substate that was most
recently visited. The History Junction applies to the level
of the hierarchy in which it appears.

Name Button Icon |Description
History @ Use a History Junction to
Junction indicate, when entering this level

in the hierarchy, that the last
state that was active becomes
the next state to be active.

An inner transition is a transition that does not exit

the source state. Inner transitions are most powerful
when defined for superstates with XOR decomposition.
Use of inner transitions can greatly simplify a Stateflow
diagram.

Glossary

Library Link

Library Model

Machine

Nonvirtual Block

Notation

A library link is a link to a chart that is stored in a library
model in a Simulink block library.

A Stateflow library model is a Stateflow model that is
stored in a Simulink library. You can include charts from
a library in your model by copying them. When you copy

a chart from a library into your model, Stateflow does

not physically include the chart in your model. Instead,

it creates a link to the library chart. You can create
multiple links to a single chart. Each link is called a chart
instance. When you include a chart from a library in your
model, you also include its state machine. A Stateflow
model that includes links to library charts has multiple
state machines. When Stateflow simulates a model that
includes charts from a library model, it includes all charts
from the library model even if there are links to only some
of its models. However, when Stateflow generates a stand-
alone or Simulink Coder target, it includes only those
charts for which there are links. A model that includes
links to a library model can be simulated only if all charts
in the library model are free of parse and compile errors.

A machine is the collection of all Stateflow blocks defined
by a Simulink model exclusive of chart instances (library
links). If a model includes any library links, it also
includes the state machines defined by the models from
which the links originate.

Blocks that perform a calculation, such as a Gain block.

A notation defines a set of objects and the rules that
govern the relationships between those objects. Stateflow
notation provides a common language to communicate
the design information conveyed by a Stateflow diagram.
Stateflow notation consists of:

* A set of graphical objects

+ A set of nongraphical text-based objects

* Defined relationships between those objects

Glossary-7

Glossary

Parallelism

Real-Time System

Simulink Coder

Simulink Coder Target

S-function

Signal propagation

Signal source

Simulink

Glossary-8

A system with parallelism can have two or more states
that can be active at the same time. The activity of
parallel states is independent. Parallelism is represented
with a parallel (AND) state decomposition.

A system that uses actual hardware to implement
algorithms, for example, digital signal processing or
control applications.

Simulink Coder software includes an automatic C
language code generator for Simulink. It produces C
code directly from Simulink block diagram models and
automatically builds programs that can be run in real-
time in a variety of environments.

An executable built from code generated by the Simulink
Coder product.

A customized Simulink block written in C or MATLAB-
code. S-functions written in C can be inlined in the
Simulink Coder software. When using Simulink together
with Stateflow for simulation, Stateflow generates an S-
function (MEX-file) for each Stateflow machine to support
model simulation. This generated code is a simulation
target and is called the S-Fun target within Stateflow.

Process used by Simulink to determine attributes of
signals and blocks, such as data types, labels, sample
time, dimensionality, and so on, that are determined by
connectivity.

The signal source is the block of origin for a signal. The
signal source may or may not be the true source.

Simulink is a software package for modeling, simulating,
and analyzing dynamic systems. It supports linear

and nonlinear systems, modeled in continuous time,
sampled time, or a hybrid of the two. Systems can also be
multirate, that is, have different parts that are sampled
or updated at different rates.

Glossary

State

Stateflow Block

Simulink allows you to represent systems as block
diagrams that you build using your mouse to connect
blocks and your keyboard to edit block parameters.
Stateflow is part of this environment. The Stateflow
block is a masked Simulink model. Stateflow builds an
S-function that corresponds to each Stateflow machine.
This S-function is the agent Simulink interacts with for
simulation and analysis.

The control behavior that Stateflow models complements
the algorithmic behavior modeled in Simulink block
diagrams. By incorporating Stateflow diagrams into
Simulink models, you can add event-driven behavior to
Simulink simulations. You create models that represent
both data and control flow by combining Stateflow blocks
with the standard Simulink blockset. These combined
models are simulated using Simulink.

A state describes a mode of a reactive system. A reactive
system has many possible states. States in a Stateflow
diagram represent these modes. The activity or inactivity
of the states dynamically changes based on events and
conditions.

Every state has hierarchy. In a Stateflow diagram
consisting of a single state, that state's parent is the
Stateflow diagram itself. A state also has history that
applies to its level of hierarchy in the Stateflow diagram.
States can have actions that are executed in a sequence
based upon action type. The action types are: entry,
during, exit, or on event _name actions.

Name Button Icon |Description
State Use a state to depict a mode of
the system.

The Stateflow block is a masked Simulink model and is
equivalent to an empty, untitled Stateflow diagram. Use

Glossary-9

Glossary

Stateflow Debugger

Stateflow Diagram

Stateflow Explorer

Stateflow Finder

Substate

Glossary-10

the Stateflow block to include a Stateflow diagram in a
Simulink model.

The control behavior that Stateflow models complements
the algorithmic behavior modeled in Simulink block
diagrams. By incorporating Stateflow blocks into
Simulink models, you can add complex event-driven
behavior to Simulink simulations. You create models
that represent both data and control flow by combining
Stateflow blocks with the standard Simulink and toolbox
block libraries. These combined models are simulated
using Simulink.

Use the Stateflow Debugger to debug and animate your
Stateflow diagrams. Each state in the Stateflow diagram
simulation is evaluated for overall code coverage. This
coverage analysis is done automatically when the target is
compiled and built with the debug options. The Debugger
can also be used to perform dynamic checking. The
Debugger operates on the Stateflow machine.

Using Stateflow, you create Stateflow diagrams. A
Stateflow diagram is also a graphical representation of a
finite state machine where states and transitions form the
basic building blocks of the system.

Use the Stateflow Explorer to add, remove, and modify
data, event, and target objects.

Use the Finder to display a list of objects based on search
criteria that you specify. You can directly access the
properties dialog box of any object in the search output
display by clicking on that object.

A state is a substate if it is contained by a superstate.

Glossary

Superstate

Target

Top-down Processing

Transition

Transition Path

Superstate

Substate J

A state is a superstate if it contains other states, called

substates.
[Sub state |

[Sub state |

Superstate

Substate J

An executable program built from code generated by
Stateflow or Simulink Coder software.

Top-down processing refers to the way in which Stateflow
processes states. In particular, Stateflow processes
superstates before states. Stateflow processes a state only
if its superstate is activated first.

A transition describes the circumstances under which the
system moves from one state to another. Either end of a
transition can be attached to a source and a destination
object. The source is where the transition begins and the
destination is where the transition ends. It is often the
occurrence of some event that causes a transition to take
place.

A transition path is a flow chart that starts and ends on a
state.

Glossary-11

Glossary

Transition Segment

Tunable parameters

True Source

Virtual Block

Glossary-12

A transition segment is a single directed edge on a
Stateflow diagram. Transition segments are sometimes
loosely referred to as transitions.

A tunable parameter is a parameter that can be adjusted
in the model and in generated code.

The true source is the block which creates a signal. The
true source is different from the signal source because
the signal source may be a simple routing block such as a
Demux block.

When creating models, be aware that Simulink blocks fall
into two basic categories: nonvirtual and virtual blocks.
Nonvirtual blocks play an active role in the simulation
of a system. If you add or remove a nonvirtual block,
you change the model's behavior. Virtual blocks, by
contrast, play no active role in the simulation. They help
to organize a model graphically. Some Simulink blocks
can be virtual in some circumstances and nonvirtual

in others. Such blocks are called conditionally virtual
blocks. The following table lists Simulinks virtual and
conditionally virtual blocks.

Block Name |Condition Under Which Block Is Virtual

Bus Virtual if input bus is virtual

Selector

Demux Always virtual

Enable Virtual unless connected directly to an
Outport block

From Always virtual

Goto Always virtual

Goto Tag Always virtual

Visibility

Ground Always virtual

Inport Virtual when the block resides within

any subsystem block (conditional or not),

Glossary

Virtual Scrollbar

Block Name |Condition Under Which Block Is Virtual

and does not reside in the root (top-level)
Simulink window.

Mux Always virtual

Outport Virtual when the block resides within
any subsystem block (conditional or not),
and does not reside in the root (top-level)
Simulink window.

Selector Virtual except in matrix mode
Signal Always virtual
Specification|

Subsystem |Virtual unless the block is conditionally
executed and/or the block's Treat as Atomic
Unit option is selected.

Terminator |Always virtual

Trigger Virtual if the Outport port is not present.

Using a virtual scrollbar, you can set a value by scrolling
through a list of choices. When you move the mouse over

a menu item with a virtual scrollbar, the cursor changes

to a line with a double arrowhead. Virtual scrollbars are

either vertical or horizontal. The direction is indicated by
the positioning of the arrowheads. Drag the mouse either
horizontally or vertically to change the value.

Glossary-13

